欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 177-183.doi: 10.3724/SP.J.1006.2010.00177

• 研究简报 • 上一篇    下一篇

甘蔗SSR和AFLP分子遗传连锁图谱构建

刘新龙1,2,毛钧1,2,陆鑫1,2,马丽1,2,Karen Sarah AITKEN4,Phillip Andrew JACKSON4,蔡青1,3,范源洪1,2,*   

  1. 1云南省甘蔗遗传改良重点实验室,云南开远661600;2云南省农业科学院甘蔗研究所,云南开远661600;2云南省农业科学院生物技术与种质资源研究所,云南昆明650223;4澳大利亚联邦科学与工业研究组织(CSIRO)植物研究中心,澳大利亚Brisbane,QLD4067
  • 收稿日期:2009-06-03 修回日期:2009-08-31 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 范源洪, E-mail: fyhysri@vip.sohu.com
  • 基金资助:

    本研究由中-澳合作项目(CS1/2000/038),云南省应用基础研究计划重点项目(2006C0013Z),国家科技基础条件平台工作项目子专题(2007DKA21002-11)资助。

Construction of Molecular Genetic Linkage Map of Sugarcane Based on SSR and AFLP Markers

LIU Xin-Long1,2,MAO Jun1,2,LU Xin1,2,MA Li1,2,Karen Sarah AITKEN 4,Phillip Andrew JACKSON4,CAI Qing1,3,FAN Yuan-Hong1,2,*   

  1. 1 Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661600, China; 2 Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China; 3 Biotechnology & Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China; 4 CSIRO Division of Plant Industry, Brisbane, QLD 4067, Australia
  • Received:2009-06-03 Revised:2009-08-31 Published:2010-01-12 Published online:2009-11-17
  • Contact: FAN Yuan-Hong, E-mail: fyhysri@vip.sohu.com

摘要:

采用甘蔗商业品种Co419与野生种割手密Y75/1/2杂交,获得269个单株,组成F1群体,用F102/356与商业品种ROC25回交获得266个单株,组成BC1群体。利用筛选的多态性条带丰富的36SSR引物和12AFLP引物,对两个群体进行PCR扩增和分子遗传连锁分析,构建甘蔗分子遗传连锁图谱。用F1群体获得630个分离标记,经c2检测,298个标记为单双剂量标记,占总标记数的47%;用BC1群体获得571个分离标记,有264个标记为单双剂量标记,占总标记数的46%4个亲本获得单双剂量标记的数量依次为Co419>02/356>Y75/1/2>ROC25。在LOD5.0,相邻标记遗传距离≤40 cM的条件下,F1群体有134个单双剂量标记被纳入55个连锁群,其中39个连锁群归属8个同源组,16个未列入,总遗传距离为1 458.3 cM,标记间平均图距为10.9 cMBC1群体有133个单双剂量标记被纳入47个连锁群,其中34个连锁群归属于8个同源组,13个连锁群未列入,总遗传距离为1 059.6 cM,标记间平均图距为8.0 cM。从4个亲本单双剂量标记进入的连锁群数来看,Co419最多,归入34个连锁群,其次为Y75/1/2,归入20个连锁群,第302/356ROC25,归入19个连锁群。研究结果表明, 从单双剂量标记比例、形成连锁群数量、总遗传距离来看,F1群体构图质量要优于BC1群体。

关键词: 甘蔗, 遗传连锁图谱, SSR, AFLP, 群体

Abstract:

To take advantage of the MAS technique and develop the molecular genetic linkage map in sugarcane breeding program in China, we constructed two molecular genetic maps by single dose markers (SDM) and double dose markers (DDM) from 36 SSR and 12 AFLP primers for two mapping populations (F1 and BC1). F1 population was from cross combination of sugarcane commercial variety (Co419) × S. spontaneum (Y75/1/2) consisting of 269 true individuals, BC1 population from backcross combination of F102/356×sugarcane commercial variety (ROC25) with 266 true individuals. All plants from two populations were detected by PCR.

Two molecular genetic linkage maps were established. 298 SDMs and DDMs were acquired by c2 test from 630 segregation markers of F1 population, about 47% of total markers; 264 SDMs and DDMs were obtained from 571 segregation markers of BC1 population which were 46% of total markers, Co419>02/356>Y75/1/2>ROC25 in efficiency of getting SDMs and DDMs. Based on LOD ≥ 5.0, genetic distance ≤ 40 cM between markers, 134 of 298 SDMs and DDMs from F1 population formed 55 linkage groups (LGs), among which 39 LGs were included in eight homology groups(HGs), 16 LGs were excluded, the map length reached 1 458.3 cM with an average distance of 10.9 cM between markers; 133 of 298 SDMs and DDMs from BC1 population made up 47 LGs , among which 34 LGs were composed in eight HGs except for 13 LGs, the map covered 1 059.6 cM with an average distance of 8.0 cM. At the same time, these SDMs and DDMs from Co419 and Y75/1/2 formed 34 LGs and 20 LGs, respectively, and these SDMs from two parents only made up 1 LGs; 19 LGs were obtained from these SDMs and DDMs of 02/356, and ROC25, 9 LGS were formed by SDMs from two parents; Co419>Y75/1/2>02/356=ROC2 according to forming number of LGs. These results indicated that F1 mapping population was better than BC1 mapping population in quality of constructing linkage map. The maps will provide the valuable information for locating gene, further research on genetic linkage map and MAS breeding.

Key words: Sugarcane, Genetic Linkage map, SSR, AFLP, Population

[1] D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann J C. Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet, 1996, 250: 405-413



[2] Bhat S R, Gill B S. The implication of 2n egg gametes in nobilisation and breeding of sugarcane. Euphytica, 1985, 34: 377-384



[3] Irvine J E. Saccharum species as horticultural classes. Theor Appl Genet, 1999, 98: 186-194



[4] D’Hont A, Paulet F, Glaszmann J C. Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chrom Res, 2002, 10: 253-262



[5] Brown J S, Schnell R J, Power E J, Douglas S L, Kuhn D N. Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter-and intra species relationships using microsatellite markers. Genet Resour Crop Evol, 2007, 54: 627-648



[6] Grivet L, Arruda P. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Curr Opin Plant Biol, 2001, 5: 122-127



[7] Aitken K S, Jackon P A, McIntyre C L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo (eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet, 2005, 110: 789-801



[8] Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann J C. RFLP mapping incultivated sugarcane (Saccharum spp.): Genome organisation in a highly polyploid and Aneuploid interspecific hybrid. Genetics, 1996, 142: 987-1000



[9] Hoarau J Y, Offmann B, D’ Hont A, Risterucci AM, Roques D, Glaszmann J C, Grivet L. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.): 1. Genome mapping with AFLP markers. Theor Appl Genet, 2001, 103: 84-97



[10] Al-Janabi S M, Honeycutt R J, McClelland M, Sobral B W S. A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics, 1993, 134: 1249-1260



[11] Da Silva J A G, Sorrells M E, Burnquist W L, Tanksley S D. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome, 1993, 36: 782-791



[12] Ming R, Liu S C, Lin Y R, Da Silva J A G, Wilson W, Braga D, van Deynze A, Wenslaff T F, Wu K K, Moore P H, Burnquist W, Sorrells M E, Irvine J E, Paterson A H. Detailed alignment of Saccharum and Sorghum chromosomes: Comparative organization of closely related diploid and polyploid genomes. Genetics, 1998, 150: 1663-1682



[13] Ming R, Liu S C, Bowers J E, Moore P H, Irvine J E, Paterson A H. Construction of Saccharum consensus genetic map from two interspecific crosses. Crop Sci, 2002, 42: 570-583



[14] Mudge J, Andersen W R, Kehrer R L, Fairbanks D J. A RAPD genetic map of Saccharum officinarum. Crop Sci, 1996, 36: 1362-1366



[15] Guimaraes C T, Sills G R, Sobral B W S. Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA, 1997, 94: 14261-14266



[16] D’Hont A, Lu Y H, Gonzalez De Leon D, Grivet L, Feldmann P, Lanaud C, Glaszmann J C. A molecular approach to unravelling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome, 1994, 37: 222-230



[17] Fang X-J(方宣钧), Wu W-R(吴为人), Tang J-L(唐纪良). DNA Marker Assisted Selection Breeding of Crop. Beijing: China Science Press, 2002. pp 22-28 (in Chinese)



[18] Cai Q, Aitken K, Fan Y H, Piperidis G, Jackson P, McIntyre C L. A preliminary assessment of the genetic relationship between Erianthus rockii and the ‘‘Saccharum complex’’ using micro-satellite (SSR) and AFLP markers. Plant Sci, 2005, 169: 976-984



[19] Wu K K, Burnquist W, Sorrells M E, Tew T L, Moore P H, Tanksley S D. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet, 1992, 83: 294-300



[20] Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J, 1993, 3: 739-744



[21] Xiao B-G(肖炳光), Xu Z-L(徐照丽), Chen X-J(陈学军), Shen A-R(申爱荣), Li Y-P(李永平), Zhu J(朱军). Genetic linkage map constructed by using a DH population for the flue-cured tobacco. Acta Tab Sin (中国烟草学报), 2006, 12(4): 35-40 (in Chinese with English abstract)



[22] Ripol M I, Churchill G A, Da Silva J A G, Sorrells M. Statistical aspects of genetic mapping in autopolyploids. Gene, 1999, 235: 31-41



[23] Wang G-L(王关林), Fang H-J(方宏筠). Plant Genetic Engineering (植物基因工程). Beijing: China Science Press, 2002. pp 232-239 (in Chinese)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[3] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[4] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[7] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[8] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[9] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[10] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[11] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[12] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[13] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[14] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
[15] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!