作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2055-2061.doi: 10.3724/SP.J.1006.2010.02055
熊发前1,2,3,蒋菁1,钟瑞春1,韩柱强1,贺梁琼1,李忠1,庄伟建4,*,唐荣华1,2,*
XIONG Fa-Qian1,2,3,JIANG Jing1,ZHONG Rui-Chun1,HAN Zhu-Qiang1,HE Liang-Qiong1,LI Zhong1,ZHUANG Wei-Jian4,*,TANG Rong-Hua1,2, *
摘要: 花生属分子标记领域的研究远落后于其他物种,而栽培种花生因其遗传基础狭窄,用大多数分子标记技术都难以检测到丰富的分子标记,因此限制了花生属野生种在改良花生栽培种方面的利用以及建立花生分子标记辅助育种技术体系。本文分别对花生属4个区组的16份种质资源和8份花生栽培种资源采用与功能基因相关的SCoT分子标记技术研究了花生属种间和栽培种内遗传多样性和亲缘关系。23条SCoT引物在花生属试材基因组中的扩增位点共194个,其中多态性位点130个,多态性达67.01%,通过聚类分析研究了它们之间的亲缘关系;在栽培种内筛选出19条多态性引物,在8份试材基因组中扩增位点198个,其中多态性位点67个,多态性为33.84%,表明SCoT分子标记技术能在花生栽培种内检测出一定程度的DNA多态性。
[1]Tang R-H(唐荣华), He L-Q(贺梁琼), Zhuang W-J(庄伟建), Han Z-Q(韩柱强), Zhong R-C(钟瑞春), Zhou C-Q(周翠球), Gao G-Q(高国庆), Li Z(李忠). Phylogenetic relationships in the genus Arachis based on SSR molecular marker profiles. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(2): 142–147 (in Chinese with English abstract) [2]Chen B-Y(陈本银), Jiang H-F(姜慧芳), Liao B-S(廖伯寿), Ren X-P(任小平), Huang J-Q(黄家权), Lei Y(雷永), Wang S-Y(王圣玉). Genetic diversity analysis of Arachis germplasm by SSR. J Trop Subtrop Bot (热带亚热带植物学报), 2008, 16(4): 296–303 (in Chinese with English abstract) [3]Tang R H, Zhuang W J, Gao G Q, He L Q, Han Z Q, Shan S H, Jiang J, Li Y R. Phylogenetic relationships in genus Arachis based on SSR and AFLP markers. Agric Sci China, 2008, 7: 405–414 [4]Santos V S E D, Gimenes M A, Valls J F M, Lopes C R. Genetic variation within and among species of five sections of genus Arachis L.(Leguminosae) using RAPDs. Genet Resour Crop Evol, 2003, 50: 841–848 [5]Milla S R, IsIeib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1–11 [6]He G H, Prakash C S. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica, 1997, 97: 143–149 [7]Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (PAPD) assay. Genome, 2000, 43: 656–660 [8]Raina S N, Rani V, Kojima T, Ogihara Y, Singh K P, Devarumath R M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 2001, 44: 763–772 [9]Jiang H F, Liao B S, Ren X P, Lei Y, Emma M, Fu T D, Crouch J H. Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses. J Genet Genom, 2007, 34: 544–554 [10]Ren X P, Huang J Q, Liao B S, Zhang X J, Jiang H F. Genomic affinities of Arachis genus and interspecific hybrids were revealed by SRAP markers. Genec Resour Crop Evol , 2010, DOI: 10.1007/s107 22 -010-9532-1 [11]Cui S-L(崔顺立), Liu L-F(刘立峰), Chen H-Y(陈焕英), Geng L-G(耿立格), Meng C-S(孟成生), Yang Y(杨余). Genetic diversity of peanut landraces in hebei province revealed by SSR markers. Sci Agric Sin (中国农业科学), 2009, 42(9): 3346–3353 (in Chinese with English abstract) [12]Tang R H, Gao G Q, He L Q, Han Z Q, Shan S H, Zhong R C, Zhou C Q, Jiang J, Li Y R, Zhuang W J. Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genom, 2007, 34: 449–459 [13]Han Z-Q(韩柱强), Gao G-Q(高国庆), Wei P-X(韦鹏霄), Tang R-H(唐荣华), Zhong R-C(钟瑞春). Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using microsatellite markers. Acta Agron Sin (作物学报), 2004, 30(11): 1097–1101 (in Chinese with English abstract) [14]Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Lin K-Y(林坤耀), Zhou G-Y(周桂元), Li S-X(李少雄), Liu H-Y(刘海燕). Genetic diversity analysis in botanical varieties of the cultivated peanut (Arachis hypogaea L.) based on SSR polymorphism. Mol Plant Breed (分子植物育种), 2008, 6(1): 71–78 (in Chinese with English abstract) [15]He L-Q(贺梁琼), Tang R-H(唐荣华), Gao G-Q(高国庆). Molecular evidence for gene introgression from wild species to cultivated varieties in peanut. Mol Plant Breed (分子植物育种), 2005, 3(6): 815–820 (in Chinese with English abstract) [16]Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S. Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China, 2008, 7: 915–921 [17]Varshney R K, Bertioli D J, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009, 118: 729–739 [18]Andersen J R, Lübberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554–560 [19]Lu C-R(陆才瑞), Yu S-X(喻树迅), Yu J-W(于霁雯), Fan S-L(范术丽), Song M-Z(宋美珍), Wang W(王武), Ma S-J(马淑娟). Development and appraisement of functional molecular marker: intron sequence amplified polymorphism (ISAP). Hereditas (遗传), 2008, 30: 1207–1216 (in Chinese with English abstract) [20]Yang J-H(杨景华), Wang S-W(王士伟), Liu X-Y(刘训言), Yang J-F(杨加付), Zhang M-F(张明方). Development and application of functional markers in higher plants. Sci Agric Sin (中国农业科学), 2008, 41(11): 3429–3436 (in Chinese with English abstract) [21]Xiong F-Q(熊发前), Tang R-H(唐荣华), Chen Z-L(陈忠良), Pan L-H(潘玲华), Zhuang W-J(庄伟建). Start codon target polymorphism (SCoT): A novel gene targeted marker technique based on the translation start codon. Mol Plant Breed (分子植物育种), 2009, 7(3): 635–638 (in Chinese with English abstract) [22]Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep, 2009, 27: 86–93 [23]Kochert G, Stalker H M, Gimenes M, Galgaro L, Lopes C R, Moore K. RFLP and cytogenetic evidence on the origins and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot, 1996, 83: 1282–1291 [24]Song W(宋伟), Wang F-G(王凤格), Yi H-M(易红梅), Li X(李翔), Zhao J-R(赵久然). Functional markers and their potential application in varieties identification and MAS breeding. Mol Plant Breed (分子植物育种), 2009, 17(3): 612–618 (in Chinese with English abstract) [25]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455–461 [26]Hu J, Vick B A. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Bio Rep, 2003, 21: 289–294 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[9] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[10] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[11] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[12] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[13] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[14] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[15] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
|