欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2084-2090.doi: 10.3724/SP.J.1006.2010.02084

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花4个脂肪酸合成相关基因的克隆和表达特征分析

董佳,魏利斌,胡艳,张天真,郭旺珍*   

  1. 南京农业大学 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2010-05-24 修回日期:2010-08-02 出版日期:2010-12-12 网络出版日期:2010-10-09
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn
  • 基金资助:

    本研究由国家重大基础研究项目(973计划) (2007CB108805)和教育部高等学校学科创新引智计划项目(111项目)(B08025)资助。

Molecular Cloning and Expression Analysis of Four Novel Fatty Acid Synthesis Related Genes in Gossypium hirsutum L.

DONG Jia,WEI Li-Bin,HU Yan,ZHANG Tian-Zhen,GUO Wang-Zhen*   

  1. National Key Laboratory of Crop Genetics & Germplasm Enhancement / Nanjing Agricultural University, Nanjing 210095, China
  • Received:2010-05-24 Revised:2010-08-02 Published:2010-12-12 Published online:2010-10-09
  • Contact: GUO Wang-Zhen,E-mail:moelab@njau.edu.cn

摘要: 脂肪酸合成相关代谢在控制油的合成和抗非生物胁迫中均起着重要作用。其脂肪酸合成相关基因的时空表达水平直接影响油的含量和脂肪酸合成相关酶的活性。本研究克隆了4个脂肪酸合成相关基因,分别命名为GhKASIIGhKASIIIGhFADGhGPAT,其中GhKASIIIGhFADGhGPAT基因cDNA全长通过电子克隆和同源克隆得到。而GhKASII通过筛库和5'-RACE途径得到。组织表达分析表明, 上述4个基因在根、茎、叶及纤维发育不同时期均有表达,属于组成性表达基因。其中GhKASIIGhKASIII在25 DPA种子中表达量最高,GhGPAT在0 DPA胚珠和15 DPA纤维中表达量很高,GhFAD在0DPA胚珠, 15 DPA种子,20 DPA纤维中表达量均很高。不同非生物胁迫的诱导表达分析表明,上述4个基因均不同程度被茉莉酸甲酯,ABA,创伤和冷害等逆境诱导表达。

关键词: 脂肪酸合成, 克隆, 表达, 非生物胁迫, 陆地棉

Abstract: Metabolism related to fatty acid synthesis plays an important role both in regulating oil biosynthesis and in plant abiotic stress tolerance. The spatial and temporal expression level of genes related to fatty acid synthesis influences the oil content and enzymes activity for fatty acid synthesis. In this study, four novel genes related to fatty acid synthesis, designated GhKASII, GhKASIII, GhFAD, and GhGPAT, were first isolated from upland cotton, respectively. The cDNA full-length of GhKASIII, GhFAD and GhGPAT were obtained by combining homologic cloning and sillico cloning, while GhKASII was obtained by screening cDNA library and 5'-RACE technique. The expression pattern analysis of different tissues and organs revealed that the transcripts of these genes were widely distributed in all the tested tissues and organs. GhKASII and GhKASIII showed the highest expression level in seeds at 25 DPA (day post anthesis), however, GhGPAT in 0 DPA ovules and 15DPA fiber tissues and GhFAD in 0 DPA ovules, 15 DPA seeds and 20 DPA fibers, respectively. Further, the analysis of expression induced by abiotic treatments indicated that the genes were differentially regulated under wounding, methyl jasmonate (Meja), cold and ABA (abscisic acid) treatments. The study will pave a way to develop further research in oil improvement of cotton seed and resistance to abiotic stress in cotton.

Key words: Fatty acid synthesis, Cloning, Expression, Abiotic stress, Upland cotton

[1]Seki M, Kamei A, Shinozaki K Y. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol, 2003, 14: 194–199
[2]Pirtle I L, Kongcharoensuntorn W, Nampaisansuk M, Knesek J E, Chapman K D, Pirtle R M. Molecular cloning and functional expression of the gene for a cotton Δ12 fatty acid desaturase (FAD2). Biochimica et Biophysica Acta, 2001, 2: 122–129
[3]Wolter F P, Schmidt R, Heinz E. Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO Journal, 1992, 11: 4685–4692
[4]Ohlrogge J B, Kuhn D N, Stumpf P K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci USA, 1979, 76: 1194–1198
[5]Anai T, Koga M, Tanaka H, Kinoshita T, Rahman S M, Takagi Y. Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep, 2003, 21: 988–992
[6]Wu Y-T(武耀廷), Liu J-Y(刘进元). A modified hot borate method for efficient isolation of total RNA from different cotton tissues. Cotton Sci (棉花学报), 2004, 16(2): 67–71 (in Chinese with English abstract)
[7]Jiang J-X(蒋建雄), Zhang T-Z(张天真). Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci (棉花学报), 2003, 15(3): 166–167 (in Chinese with English abstract)
[8]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real­time quantitative PCR and the 2(­delta delta C(T)) method. Methods, 2001, 25: 402–408
[9]Hwang S K, Hwang Y S. Molecular cloning and functional expression of perilla frutescens 3-ketoacyl-
[acyl carrier protein] synthase III. Mol Cells, 2000, 10: 375–381
[10]Hwang S K, Kim K H, Hwang Y S. Molecular cloning and expression analysis of 3-ketoacyl-acp synthases in the immature seeds of Perilla frutescens. Mol cells, 2000, 10: 533–539
[11]Pidkowich M S, Nguyen H T, Heilmann I, Ischebeck T, Shanklin J. Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci USA, 2007, 104: 4742–4747
[12]Wanjie S W, Welti R, Moreau R A, Chapman K D. Identi?cation and quanti?cation of glycerolipids in cotton fibers: reconciliation with metabolic pathway predictions from DNA databases. Lipids, 2005, 40: 773–785
[13]Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell, 2007, 19: 3692–3704
[14]Ji S J, Lu Y C, Feng J X, Wei G, Li J, Shi Y H, Fu Q, Liu D, Luo J C, Zhu Y X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res, 2003, 31: 2534–2543
[15]Nishiuchi T, Hamada T, Kodama H. Wounding changes the spatial expression pattern of the Arabidopsis plastid ω-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Plant Cell, 1997, 9: 1701–1712
[16]Hamada T, Nishiuchi T, Kodama H, Nishimura M, Iba K. cDNA cloning of a wounding-inducible gene encoding a plastid ω-3 fatty acid desaturase from tobacco. Plant Cell Physiol, 1996, 37: 606–611
[17]Zou J, Abrams G D, Barton D L, Taylor D C, Pomeroy M K, Abrams S R. lnduction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L. cv. Reston (biological responses in the presence of 8
[prime]-hydroxyabscisic acid). Plant Physiol, 1995, 108: 563–571
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[7] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[8] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[9] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[10] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[13] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[14] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!