欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 211-216.doi: 10.3724/SP.J.1006.2010.00211

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻条斑花叶突变体生态st(t) 的鉴定与遗传定位

桑贤春,徐芳芳,凌英华,赵芳明,杨正林,唐彦强,田晓庆,李云峰,何光华   

  1. 西南大学水稻研究所 / 农业部西南作物遗传改良与育种重点开放实验室,重庆 400716
  • 收稿日期:2009-07-09 修回日期:2009-10-08 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 何光华, E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871495),重庆市杰出青年基金项目(2008AB1033),教育部新世纪优秀人才支持计划项目和西南大学博士启动基金(SWUB2007014)资助。

Identification and Molecular Mapping of Stripe Leaf Mutant st(t) in Rice (Oryza sativa L.)

SANG Xian-Chun,XU Fang-Fang,LING Ying-Hua,ZHAO Fang-Ming,YANG Zheng-Lin,TANG Yan-Qiang,TIAN Xiao-Qing,LI Yun-Feng,HE Guang-Hua*   

  1. Rice Research Institute of Southwest University / Key Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Chongqing 400716, China
  • Received:2009-07-09 Revised:2009-10-08 Published:2010-02-10 Published online:2009-12-21
  • Contact: HE Guang-hua,E-mail: hegh@swu.edu.cn

摘要:

利用EMS诱变育成优良籼型恢复系缙恢10号,从其后代中鉴定出一个白色条斑花叶突变体st(t),在三叶期开始表现白斑,拔节期白斑变为不规则线状,一直保持到成熟。突变体叶绿素含量明显下降,类胡萝卜素含量显著升高。透射电镜观察表明,突变体的绿色叶片部位与野生型相比,在细胞结构上无明显差异,叶绿体发育正常;突变体的白化部位细胞结构异常,质体内多含有积聚在一起的嗜锇小球,不能发育出正常叶绿体所具有的类囊体和基质片层结构。遗传分析表明该性状受一对隐性核基因调控,利用1 500株西农1A/st(t)F2隐性定位群体,最终把St(t)基因定位在第6染色体SSR标记RM19745RM19762之间,遗传距离分别为0.07 cM0.27 cM,根据9311基因组序列推测,两标记之间的物理距离约为345 kb。这为St(t)基因的图位克隆和分子标记辅助育种奠定了基础。

关键词: 条斑花叶, 水稻(Oryza sativa L.), 叶绿体, 基因定位

Abstract:

A stripe leaf mutant temporarily designated as st(t) was discovered in the progeny of an excellent indica restorer line Jinhui10 seed by treatment of EMS (ethyl methane sulfonate) in Rice Research Institute of Southwest University. The st(t) mutant displayed the variegated leaves at three-leaf stage, the variegation developed the white irregular line stripe from elongating stage to the maturation. Compared with the wild type, the mutant decreased the chlorophyll content and increased the carotenoid content significantly. Cells structure was detected by Transmission Electron Microscopic (TEM), and the results indicated that there was no difference between the wild type and the green parts of the st(t), both of them could develop normal chloroplast; in the white parts of the st(t), cells developed abnormally contained irregular stromal lamellae, aberrant thylakoids and more osmiophilic granules. Genetic analysis suggested that the mutational characters were controlled by one nuclear recessive gene. Xinong1A was crossed with the st(t) and 1 500 mutants from the F2 population were used for gene mapping. Finally, St(t) gene was mapped between SSR marker RM19745 and RM19762 on the chromosome 6, the genetic distances were 0.07 cM and 0.27 cM respectively and the physical distance was 345 kb according to indica rice 9311. This result provides a foundation of map-based cloning of St(t) gene as well as its molecular marker-assisted breeding.

Key words: Stripe leaf, Rice(Oryza sativa L.), Chloroplast, Gene mapping

[1]         Rüdiger W. Chlorophyll metabolism: from outer space down to the molecular level. Phytochemistry, 1997, 46: 1151–1167
[2]         BollivarDW.Recent advances in chlorophyll biosynthesis. Photosynth Res, 2006, 90: 173–194
[3]         Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol, 2006, 9: 248–255
[4]         Kurata N, Miyoshi K, Nonomura K I, Yamazaki Y, Ito Y. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol, 2005, 46: 48–62
[5]         Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007,145: 29−40
[6]         Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) J Genet Genomics, 2009,36(2): 117−123in rice.
[7]         Liu W Z, FuY P, HuG C, Si H M, ZhuL, Wu C, SunZ X. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795
[8]         Zhang H T, Li J J, YooJ H, Yoo S C,ChoS H,Koh H J, Seo H S,Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337
[9]         Kensuke K, Hisayo K, Hikaru S, Koh I. Characterization of a zebra mutant of rice with increased susceptibility to light stress. Plant Cell Physiol, 2000, 41(2): 158−164
[10]      Sanchez A C, Khush G S. Chromosomal location of some marker genes in rice using the primary trisomics. J Hered, 1994, 85: 297−300
[11]      Li H C, Qian Q, Wang Y, Li X B, Zhu L H, Xu J C. Characterization and mapping of a white panicle mutant gene in rice. Chin Sci Bull, 2003, 48(5): 457−459
[12]      Kensuke K, Akiko M, Mitsuo N, Koh I. A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997, 12: 1241−1250
[13]      Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985−996
[14]      Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52: 512−527
[15]      Li N(李娜), Chu H-W(储黄伟), Wen T-Q(文铁桥), Zhang D-B(张大兵). Genetic analysis and mapping of the rice white midrib mutantOswm. Acta Agric Shanghai (上海农业学报), 2007, 23(1): 1−4 (in Chinese with English abstract)
[16]      Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307–313
[17]      He R-F(何瑞锋), Ding Y(丁毅), Yu J-H(余金洪), Zu M-S(祖明生). Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res (武汉植物学研究), 2001, 19(1): 1–5 (in Chinese with English abstract)
[18]      Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[19]      Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325
[20]      Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing) (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)
[21]      Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 259: 297–607
[22]      Liu M-M(刘梦梦), Sang X-C(桑贤春), Ling Y-H(凌英华), Du P(杜鹏), Zhao F-M(赵芳明), Yang Z-L(杨正林), He G-H(何光华). Genetic analysis and molecular mapping of a yellow-green leaf gene (YGL4)in rice (Oryza sativa L.). Acta Agron Sin (作物学报),2009, 35(8): 1405–1409 (in Chinese with English abstract)
[23]      Chen D-X (陈德西), Ma B-T (马炳田), Wang Y-P (王玉平), Li S-G (李仕贵), Hao M (郝铭). Morphological and anatomical characterization of a stripe mutant with abnormal floral organs in rice. J Mol Cell Biol (分子细胞生物学报), 2006, 39(4): 339–349 (in Chinese with English abstract)
[24]      Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A. Nambogga M, Rodermel S. Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ, 2007, 30: 350–365
[25]      Aluru M R, Zola J, Foudree A, Rodermel S R. Chloroplast photooxidation-induced transcriptome reprogramming in Arabidopsis immutans white leaf sectors. Plant Physiol, 2009, 150: 904–923
[26]      Kato Y, Miura E, Matsushima R, Sakamoto W. White leaf sectors in yellow variegated2 are formed by viable cells with undifferentiated plastids. Plant Physiol, 2007, 144: 952–960
[27]      López-Juez E. Plastid biogenesis, between light and shadows. J Exp Bot, 2007, 58: 11–26
[28]      Gothandam K M, Kim E S, Cho H J, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421–433
[29]      Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun C H, Iida S. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J, 2006, 45: 46–57
[30]      Hu J-T(胡景涛), Zhang J(张甲), Li Y-Y(李园园), Fu C-Y(付崇允), Zheng J(郑静), Chen J-B(陈家彬), Hu Y(胡燕), Li S-G(李仕贵). Genetic analysis and mapping of a rice white midrib mutant Oswm2. Hereditas (Beijing) (遗传), 2008, 30(9): 1201–1206 (in Chinese with English abstract)
[31]      Yoo S C, Cho S H,Sugimoto H,Li J, Kusumi K, Koh H J, Iba K, Paek N C. Rice Virescent-3 and Stripe-1 encoding the large and small subunits of Ribonucleotide Reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388–401
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[3] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[4] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[5] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[6] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[7] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[8] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[9] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[10] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[11] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[12] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[13] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[14] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[15] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!