作物学报 ›› 2010, Vol. 36 ›› Issue (3): 410-421.doi: 10.3724/SP.J.1006.2010.00410
洪彦彬,陈小平,刘海燕,周桂元,李少雄,温世杰,梁炫强*
摘要:
[1] Kochert G, Halward R, Branch W D, Simpson C E. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet, 1991, 81: 565-570 [2] Stalker H T, Dhesi J S, Kochert G. Genetic diversity within the species Arachis duranensis Krapov. & W.C. Gregory, a possible progenitor of cultivated peanut. Genome, 1995, 38: 1201-1212 [3] Raina S N, Rani V, Kojima T, Ogihara Y, Singh K P, Devarumath R M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 2001, 44: 763-772 [4] Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome, 2000, 43: 656-660 [5] Milla S R, Isleib T G, Stalker H T, Taxonomic relationships among Arachis sect: Arachis species as revealed by AFLP markers. Genome, 2005, 8: 1-11 [6] Tang R H, Gao G Q, He L Q, Hang Z Q, Shan S H, Zhong R C, Zhou C Q, Jiang Q, Li Y R, Zhuang W J. Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genom, 2007, 34: 449-459 [7] Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Lin K-Y(林坤耀), Zhou G-Y(周桂元), Li S-X(李少雄), Liu H-Y(刘海燕). Genetic diversity analysis in botanical varieties of the cultivated peanut (Arachis hypogaea L.) based on SSR polymorphism. Mol Plant Breed(分子植物育种), 2008, 6(1): 71-78 (in Chinese with English abstract) [8] Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S, Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China, 2008, 7: 915-921 [9] Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Liu H-Y(刘海燕), Zhou G-Y(周桂元), Li S-X(李少雄), Wen S-J(温世杰). Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agron Sin (作物学报), 2009, 35: 395-402 (in Chinese with English abstract) [10] Liang X Q, Chen X P, Hong Y B, Liu H Y, Guo B Z. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol, 2009, 9: 35 [11] Benson G, Tandem repeats finder: A program to analyze DNA sequences. Nucl Acids Res, 1999, 27: 573-580 [12] Castelo A T, Martins W, Gao G R. TROLL - Tandem repeat occurrence locator. Bioinformatics, 2002, 18: 634-636 [13] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol, 2005, 23: 48-55 [14] Choudhary S, Sethy N K, Shokeen B, Bhatia S. Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet, 2009, 118: 591-608 [15] Kantety R V, La Rota M, Matthews D E, Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510 [16] Yu J K, Dake T M, Singh S, Benscher D, Li W, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat (SSR) markers for hexaploid wheat. Genome, 2004, 47, 805-818 [17] Rossi M, Araujo P G, Paulet F, Garsmeur O, Dias V M, Chen H, Van Sluys M A, D'Hont A. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genom, 2003, 269: 406-419 [18] Castillo A, Budak H, Varshney R K, Dorado G, Graner A, Hernandez P. Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol, 2008, 8: 97 [19] Luro F L, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R. Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other citrus species and their effectiveness for genetic mapping. BMC Genomics, 2008, 9: 287 [20] Aggarwal R K, Hendre P S, Varshney R K, Bhat P R, Krishnakumar V, Singh L. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species Theor Appl Genet, 2006, 114: 359-372 [21] Varshney R K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E Langridge P, Graner A. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195-202 [22] Gutierrez M V, Patto M C V, Huguet T, Cubero J I, Moreno M T, Torres A M, Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet, 2005, 110: 1210-1217 [23] He G H, Woullard F E, Marong I, Guo B Z. Transferability of soybean markers in peanut (Arachis hypogaea L.). Peanut Sci, 2006, 33: 22-28 [24] Lu S-D(卢圣栋). Current Protocols for Molecular Biology (现代分子生物学实验技术). Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College Press, 1999. pp 101-136 [25] Varshney R K, Thiel T, Stein N, Langridge P, Graner A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett, 2002, 7: 537-546 [26] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Nat Genet, 2002, 30: 194-200 [27] Gao L F, Tang J F, Li H W, Jia J Z. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245-261 [28] Jayashree B, Punna R, Prasad P, Bantte K, Hash C T, Chandra S, Hoisington D A, Varshney R K. A database of simple sequence repeats from cereal and legume expressed sequence tags mined in silico: Survey and evaluation. In silico Biol, 2007, 6: 607-620 [29] Saha M C, Mian M A, Eujayl I, Zwonitzer J C, Wang L, May G D. Tall fescue EST-SSR markers with transferability across several grass species. Theor App1 Genet, 2004, 109: 783-791 [30] Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor App1 Genet, 2003, 106: 411-422 [31] Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-112 [32] Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genom, 2003, 270, 315-323 [33] Sreenivasulu N, Kavikishor P B, Varshney R K, Altschmied L. Mining functional information from cereal genomes—the utility of expressed sequence tags. Curr Sci, 2002, 83: 965-973 [34] Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol Biol Evol, 1998, 15: 1275-1287 [35] Treuren V R, Kuittinen H, Karkkainen K, Baenagonzalez E, Savolainen O. Evolution of microsatellites in Arabis petraea and Arabis lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol, 1997, 14: 220-229 [36] Provan J, Powell W, Waugh R. Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theor App1 Genet, 1996, 92: 1078-1084 [37] Röder M S, Plaschke J, König S U, Börner A, Sorrells M E, Tanksley S D, Ganal M W, Abundance, variability and chromosomal location of microsatellites in wheat. Mol General Genet, 1995, 246: 327-333 [38] Ellegren H, Primmer C R, Sheldon B C. Microsatellite ‘evolution’: Directionality or bias. Nat Genet, 1995, 11: 360-362 [39] Ellegren H, Moore S, N. Robinson, Byrne K, Ward W, Sheldon B C. Microsatellite evolution: A reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol, 1997, 14: 854-860 [40] Ellgren H. Microsatellites: Simple sequences with complex evolution. Nat Genet, 2004, 5: 435-445 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919. |
[9] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[10] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[11] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[12] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[13] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[14] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[15] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
|