作物学报 ›› 2011, Vol. 37 ›› Issue (01): 28-39.doi: 10.3724/SP.J.1006.2011.00028
佘茂云1,陈朵朵2,冯晨3,杜丽璞1,叶兴国1,*
SHE Mao-Yun1,CHEN Duo-Duo2,FENG Chen3,DU Li-Pu1,YE Xing-Guo1,*
摘要: 利用in silico及反向PCR技术, 从小麦中克隆了亚硝酸还原酶编码基因及其调控序列, 进一步利用原核诱导表达、半定量RT-PCR、AS-PCR及生物信息学手段对克隆的新基因进行鉴定及染色体定位分析。开放阅读框预测结合测序结果表明, 该基因gDNA长2 881 bp, 包含4个外显子和3个内含子, cDNA长1 830 bp, GenBank登录号分别为FJ555239和FJ527909, 预测编码产物大小约为65.7 kD, 与NCBI已公布的亚硝酸还原酶基因编码产物同源性达60%以上, 其中与其他单子叶谷类作物同源性达80%以上。IPCR技术延伸该基因5′端侧翼序列至-2 924 bp (以ATG起始计算), 经1 mmol L-1 IPTG诱导后可表达大小约为70 kD的蛋白(含约3.8 kD的组氨酸标签)。RT-PCR结果显示, 30 mmol L-1 KNO3处理小麦幼苗1 h, 亚硝酸还原酶基因表达量最高。酶活性测定表明, 随着KNO3处理时间延长亚硝酸还原酶活性增强。AS-PCR检测发现, 该基因在普通小麦6A及6B染色体上至少各存在1个拷贝。
[1]Habash D Z, Bernard S, Schondelmaier J, Weyen J, Quarrie S A. The genetics of nitrogen use in hexaploid wheat: N utilization, development and yield. Theor Appl Genet, 2007, 114: 403-419 [2]Beevers L, Hageman R H. Nitrate reduction in higher plants. Annu Rev Plant Physiol, 1969, 20: 495-522 [3]Caba J M, Lluch C, Ligero F. Distribution of nitrate reductase activity in Vicia faba: effect of nitrate and plant genotype. Physiol Plant, 1995, 93: 667-672 [4]Solomonson L P, Barber M J. Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 225-253 [5]Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: Nitrate reductase mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2002, 99: 16314-16318 [6]Wang R C, Tischner R, Gutiérrez R A, Hoffman M, Xing X J, Chen M S, Coruzzi G, Crawford N M. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol, 2004, 136: 2512-2522 [7]Wallenstein M D, Myrold D D, Firestone M, Voytek M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl, 2006, 16: 2143-2152 [8]Ali A, Sivakami S, Raghuram N. Effect of nitrate, nitrite, ammonium, glutamate, glutamine and 2-oxoglutarate on the RNA levels and enzyme activities of nitrate reductase and nitrite reductase in rice. Physiol Mol Biol Plants, 2007, 13: 17-25 [9]Miflin B J. The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. Plant Physiol, 1974, 54: 550-555 [10]Sivasankar S, Oaks A. Nitrate assimilation in higher plants: the effect of metabolites and light. Plant Physiol Biochem, 1996, 34: 609-620 [11]Mo L-Y(莫良玉), Wu L-H(吴良欢), Tao Q-L(陶勤南). Research advances on GS/GOGAT cycle in higher plants. Plant Nutr Fert Sci(植物营养与肥料科学), 2001, 7(2): 223-231 (in Chinese with English abstract) [12]Li Y-F(李玉峰), Huang Q-C(黄群策), Liang Y-Z(梁运章). Effect of N+ implantation on tissue culture of mature embryo of autotetraploid rice. Hybrid Rice(杂交水稻), 2006, 21(4): 61-63 (in Chinese with English abstract) [13]Gerard J, Lepoivre P, Lepoivre P. Uptake kinetics of medium constituents during batch growth of potato cell cultures. Biotech Lett, 1991, 13: 381-384 [14]Ogawa T, Fukuoka H, Ohkawa Y. Effects of reduced nitrogen source and sucrose concentration on varietal differences in rice cell culture. Breed Sci, 1996, 46: 179-184 [15]Campbell W H. Higher plant nitrate reductase: arriving at a molecular view. Curr Top Plant Biochem Physiol, 1988, 7: 1-15 [16]Zumft W G. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev, 1997, 61: 533-616 [17]Nishimura A, Ashikari M, Lin S, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA, 2005, 102: 11940-11944 [18]Ozawa K, Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci, 2006, 170: 384-393 [19]Ogawa T, Fukuoka H, Yano H, Ohkawa Y. Relationships between nitrite reductase activity and genotype-dependent callus growth in rice cell cultures. Plant Cell Rep, 1999, 18: 576-581 [20]Kronenberger J, Lepingle A, Caboche M, Vaucheret H. Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet, 1993, 236: 203-208 [21]Duncanson E, Gilkes A F, Kirk D W, Sherman A, Wray J L. nir1, a conditional-lethal mutation in barley causing a defect in nitrite reduction. Mol Gen Genet, 1993, 236: 275-282 [22]Crété P, Caboche M, Meyer C. Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant J, 1997, 11: 625-634 [23]Lahners K, Kramer V, Back E, Privalle L, Rothstein S. Molecular cloning of complementary DNA encoding maize nitrite reductase. Molecular analysis and nitrate induction. Plant Physiol, 1988, 88: 741-746 [24]Vaucheret H, Kronenberger J, Leplngle A, Vilaine F, Boutin J P, Caboche M. Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J, 1992, 2: 559-569 [25]Littell R C, Henry P R, Ammerman C B. Statistical analysis of repeated measures data using SAS procedures J Anim Sci, 1998, 76: 1216-1231 [26]Kwok S, Kellogg D E, McKinney N, Spasic D, Godal L, Levenson C, Sninsky J J. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nucl Acids Res, 1990, 18: 999-1005 [27]http://linux1.softberry.com/berry.phtml?topic=fgenesh-m&group=programs&subgroup=gfind. Notes on selected softberry products (released Dec. 07. 07). Softberry, Inc. 2000-2007. p 19 [28]Wang S-Y(王帅玉), Sheng Q(盛清), Lü Z-B(吕正兵), Chen J(陈健), Nie Z-M(聂作明), Wang D(王丹), Liu L-L(刘立丽), Shen H-D(沈红丹), Shu J-H(舒建洪), Chen J-Q(陈剑清), Wu X-F(吴祥甫), Zhang Y-Z(张耀洲). Expression, tissue distribution and subcellular localization of Bm595 from Silkworm (Bombyx mori). Sci Agric Sin (中国农业科学), 2010, 43(3): 648-654(in Chinese with English abstract) [29]Suzuki I, Horie N, Sugiyama T, Omata T. Identification and characterization of two nitrogen-regulated genes of the cyanobacterium Synechococcus sp. strain PCC7942 required for maximum efficiency of nitrogen assimilation. J Bacteriol, 1995, 177: 290-296 [30]Liu B(刘博), Su Q(苏乔), Tang M-Q(汤敏谦), Yuan X-D(袁晓东), An L-J(安利佳). Progress of the PCR amplification techniques for chromosome walking. Hereditas(遗传), 2006, 28(5): 587-595(in Chinese with English abstract) [31]Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quilleré I, Leydecker M T, Kaiser W M, Morot-Gaudry J F. Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 2002, 215: 708-715 [32]Bellissimo D B, Privalle L S. Expression of spinach nitrite reductase in Escherichia coli: site-directed mutagenesis of predicted active site amino acids. Arch Biochem Biophys, 1995, 323: 155-163 [33]He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58 [34]Zhang W, Gianibelli M C, Ma W, Rampling L, Gale K R. Identification of SNPs and development of allele-specific PCR markers for γ-gliadin alleles in Triticum aestivum. Theor Appl Genet, 2003, 107: 130-138 [35]Lei Z S, Gale K R, He Z H, Gianibelli C, Larroque O, Xia X C, Butow B J, Ma W. Y-type gene specific markers for enhanced discrimination of high-molecular-weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci, 2006, 43: 94-101 [36]Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed, 2005, 16: 209-218 [37]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213-221 [38]Akhunov E D, Goodyear A W, Geng S, Qi L L, Echalier B, Gill B S, Miftahudin, Gustafson J P, Lazo G, Chao S, Anderson O D, Linkiewicz A M, Dubcovsky J, La Rota M, Sorrells M E, Zhang D, Nguyen H T, Kalavacharla V, Hossain K, Kianian S F, Peng J, Lapitan N L, Gonzalez-Hernandez J L, Anderson J A, Choi D W, Close T J, Dilbirligi M, Gill K S, Walker-Simmons M K, Steber C, McGuire P E, Qualset C O, Dvorak J. The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res, 2003, 13: 753-763 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[7] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[8] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[9] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[10] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[11] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[14] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[15] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
|