欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 28-39.doi: 10.3724/SP.J.1006.2011.00028

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦亚硝酸还原酶基因及调控序列克隆、定位和表达分析

佘茂云1,陈朵朵2,冯晨3,杜丽璞1,叶兴国1,*   

  1. 1 中国农业科学院作物科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 农业部作物遗传育种重点开放实验室, 北京 100081; 2 武汉大学生命科学学院, 湖北武汉 430072; 3 北京城市学院, 北京 100083
  • 收稿日期:2010-07-19 修回日期:2010-10-05 出版日期:2011-01-12 网络出版日期:2010-11-12
  • 通讯作者: 叶兴国, E-mail: yexg@mail.caas.net.cn, Tel: 010-82109765
  • 基金资助:

    本研究由国家自然科学基金(30971776)和《科技导报》博士生创新研究计划项目(KJDB200902-14)资助。

Isolation, Chromosome Assignment, and Expression Assay of Nitrite Reductase Gene and Regulatory Sequence in Wheat

SHE Mao-Yun1,CHEN Duo-Duo2,FENG Chen3,DU Li-Pu1,YE Xing-Guo1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility of Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Genetic and Breeding, Ministry of Agriculture, Beijing 100081, China; 2 Institute of Life Science, Wuhan University, Wuhan 430072, China; 3 Beijing City University, Beijing 100083, China
  • Received:2010-07-19 Revised:2010-10-05 Published:2011-01-12 Published online:2010-11-12
  • Contact: YE Xing-Guo, E-mail: yexg@mail.caas.net.cn, Tel: 010-82109765

摘要: 利用in silico及反向PCR技术, 从小麦中克隆了亚硝酸还原酶编码基因及其调控序列, 进一步利用原核诱导表达、半定量RT-PCR、AS-PCR及生物信息学手段对克隆的新基因进行鉴定及染色体定位分析。开放阅读框预测结合测序结果表明, 该基因gDNA长2 881 bp, 包含4个外显子和3个内含子, cDNA长1 830 bp, GenBank登录号分别为FJ555239和FJ527909, 预测编码产物大小约为65.7 kD, 与NCBI已公布的亚硝酸还原酶基因编码产物同源性达60%以上, 其中与其他单子叶谷类作物同源性达80%以上。IPCR技术延伸该基因5′端侧翼序列至-2 924 bp (以ATG起始计算), 经1 mmol L-1 IPTG诱导后可表达大小约为70 kD的蛋白(含约3.8 kD的组氨酸标签)。RT-PCR结果显示, 30 mmol L-1 KNO3处理小麦幼苗1 h, 亚硝酸还原酶基因表达量最高。酶活性测定表明, 随着KNO3处理时间延长亚硝酸还原酶活性增强。AS-PCR检测发现, 该基因在普通小麦6A及6B染色体上至少各存在1个拷贝。

关键词: 小麦, 亚硝酸还原酶, 表达分析, 启动子, 染色体定位

Abstract: Nitrite reductase is wildly involved in N metabolism in plants and has shown excellent relevance to regeneration potential in the tissue culture of rice (Oryza sativa L.). In this study, in silico and inverse PCR techniques were employed to isolate nitrite reductase encoded gene and its regulatory sequences from wheat (Triticum aestivum L.). This gene was predicted to contain four exons and three introns. The gDNA and cDNA sequences were 2 881 bp and 1 830 bp in length, respectively, and they were both submitted to GenBank under the accession numbers FJ555239 and FJ527909. Its deduced encoding protein product was approximately 65.7 kD, sharing high (more than 60%) identity with other nitrite reductase genes deposited in the NCBI database, especially with those from other monocot cereal crops (more than 80%). The 5′ flanking region was isolated and extended to -2 924 bp (counting from the start code: ATG) through inverse PCR. After induced by 1 mmol L-1 IPTG, a protein of ca. 70 kD was obtained in prokaryotic expression vector pET-28a, including a histidine tag of ca. 3.8 kD. The highest expression of gene in wheat seedlings was induced by 30 mmol L-1 KNO3 for 1 h. Measurement on nitrite reductase activity showed the enzyme activity increased following the treatment time extension at 5-d intervals under the above same condition. According to the result of AS-PCR analysis, at least one copy of the gene existed on chromosome 6A and 6B each in common wheat. The study provides a basis for functional determination of wheat nitrite reductase gene in subsequent research.

Key words: Wheat, Nitrite reductase, Expression assay, Promoter, Chromosome assignment

[1]Habash D Z, Bernard S, Schondelmaier J, Weyen J, Quarrie S A. The genetics of nitrogen use in hexaploid wheat: N utilization, development and yield. Theor Appl Genet, 2007, 114: 403-419
[2]Beevers L, Hageman R H. Nitrate reduction in higher plants. Annu Rev Plant Physiol, 1969, 20: 495-522
[3]Caba J M, Lluch C, Ligero F. Distribution of nitrate reductase activity in Vicia faba: effect of nitrate and plant genotype. Physiol Plant, 1995, 93: 667-672
[4]Solomonson L P, Barber M J. Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 225-253
[5]Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: Nitrate reductase mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2002, 99: 16314-16318
[6]Wang R C, Tischner R, Gutiérrez R A, Hoffman M, Xing X J, Chen M S, Coruzzi G, Crawford N M. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol, 2004, 136: 2512-2522
[7]Wallenstein M D, Myrold D D, Firestone M, Voytek M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl, 2006, 16: 2143-2152
[8]Ali A, Sivakami S, Raghuram N. Effect of nitrate, nitrite, ammonium, glutamate, glutamine and 2-oxoglutarate on the RNA levels and enzyme activities of nitrate reductase and nitrite reductase in rice. Physiol Mol Biol Plants, 2007, 13: 17-25
[9]Miflin B J. The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. Plant Physiol, 1974, 54: 550-555
[10]Sivasankar S, Oaks A. Nitrate assimilation in higher plants: the effect of metabolites and light. Plant Physiol Biochem, 1996, 34: 609-620
[11]Mo L-Y(莫良玉), Wu L-H(吴良欢), Tao Q-L(陶勤南). Research advances on GS/GOGAT cycle in higher plants. Plant Nutr Fert Sci(植物营养与肥料科学), 2001, 7(2): 223-231 (in Chinese with English abstract)
[12]Li Y-F(李玉峰), Huang Q-C(黄群策), Liang Y-Z(梁运章). Effect of N+ implantation on tissue culture of mature embryo of autotetraploid rice. Hybrid Rice(杂交水稻), 2006, 21(4): 61-63 (in Chinese with English abstract)
[13]Gerard J, Lepoivre P, Lepoivre P. Uptake kinetics of medium constituents during batch growth of potato cell cultures. Biotech Lett, 1991, 13: 381-384
[14]Ogawa T, Fukuoka H, Ohkawa Y. Effects of reduced nitrogen source and sucrose concentration on varietal differences in rice cell culture. Breed Sci, 1996, 46: 179-184
[15]Campbell W H. Higher plant nitrate reductase: arriving at a molecular view. Curr Top Plant Biochem Physiol, 1988, 7: 1-15
[16]Zumft W G. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev, 1997, 61: 533-616
[17]Nishimura A, Ashikari M, Lin S, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA, 2005, 102: 11940-11944
[18]Ozawa K, Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci, 2006, 170: 384-393
[19]Ogawa T, Fukuoka H, Yano H, Ohkawa Y. Relationships between nitrite reductase activity and genotype-dependent callus growth in rice cell cultures. Plant Cell Rep, 1999, 18: 576-581
[20]Kronenberger J, Lepingle A, Caboche M, Vaucheret H. Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet, 1993, 236: 203-208
[21]Duncanson E, Gilkes A F, Kirk D W, Sherman A, Wray J L. nir1, a conditional-lethal mutation in barley causing a defect in nitrite reduction. Mol Gen Genet, 1993, 236: 275-282
[22]Crété P, Caboche M, Meyer C. Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant J, 1997, 11: 625-634
[23]Lahners K, Kramer V, Back E, Privalle L, Rothstein S. Molecular cloning of complementary DNA encoding maize nitrite reductase. Molecular analysis and nitrate induction. Plant Physiol, 1988, 88: 741-746
[24]Vaucheret H, Kronenberger J, Leplngle A, Vilaine F, Boutin J P, Caboche M. Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J, 1992, 2: 559-569
[25]Littell R C, Henry P R, Ammerman C B. Statistical analysis of repeated measures data using SAS procedures J Anim Sci, 1998, 76: 1216-1231
[26]Kwok S, Kellogg D E, McKinney N, Spasic D, Godal L, Levenson C, Sninsky J J. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nucl Acids Res, 1990, 18: 999-1005
[27]http://linux1.softberry.com/berry.phtml?topic=fgenesh-m&group=programs&subgroup=gfind. Notes on selected softberry products (released Dec. 07. 07). Softberry, Inc. 2000-2007. p 19
[28]Wang S-Y(王帅玉), Sheng Q(盛清), Lü Z-B(吕正兵), Chen J(陈健), Nie Z-M(聂作明), Wang D(王丹), Liu L-L(刘立丽), Shen H-D(沈红丹), Shu J-H(舒建洪), Chen J-Q(陈剑清), Wu X-F(吴祥甫), Zhang Y-Z(张耀洲). Expression, tissue distribution and subcellular localization of Bm595 from Silkworm (Bombyx mori). Sci Agric Sin (中国农业科学), 2010, 43(3): 648-654(in Chinese with English abstract)
[29]Suzuki I, Horie N, Sugiyama T, Omata T. Identification and characterization of two nitrogen-regulated genes of the cyanobacterium Synechococcus sp. strain PCC7942 required for maximum efficiency of nitrogen assimilation. J Bacteriol, 1995, 177: 290-296
[30]Liu B(刘博), Su Q(苏乔), Tang M-Q(汤敏谦), Yuan X-D(袁晓东), An L-J(安利佳). Progress of the PCR amplification techniques for chromosome walking. Hereditas(遗传), 2006, 28(5): 587-595(in Chinese with English abstract)
[31]Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quilleré I, Leydecker M T, Kaiser W M, Morot-Gaudry J F. Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 2002, 215: 708-715
[32]Bellissimo D B, Privalle L S. Expression of spinach nitrite reductase in Escherichia coli: site-directed mutagenesis of predicted active site amino acids. Arch Biochem Biophys, 1995, 323: 155-163
[33]He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58
[34]Zhang W, Gianibelli M C, Ma W, Rampling L, Gale K R. Identification of SNPs and development of allele-specific PCR markers for γ-gliadin alleles in Triticum aestivum. Theor Appl Genet, 2003, 107: 130-138
[35]Lei Z S, Gale K R, He Z H, Gianibelli C, Larroque O, Xia X C, Butow B J, Ma W. Y-type gene specific markers for enhanced discrimination of high-molecular-weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci, 2006, 43: 94-101
[36]Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed, 2005, 16: 209-218
[37]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213-221
[38]Akhunov E D, Goodyear A W, Geng S, Qi L L, Echalier B, Gill B S, Miftahudin, Gustafson J P, Lazo G, Chao S, Anderson O D, Linkiewicz A M, Dubcovsky J, La Rota M, Sorrells M E, Zhang D, Nguyen H T, Kalavacharla V, Hossain K, Kianian S F, Peng J, Lapitan N L, Gonzalez-Hernandez J L, Anderson J A, Choi D W, Close T J, Dilbirligi M, Gill K S, Walker-Simmons M K, Steber C, McGuire P E, Qualset C O, Dvorak J. The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res, 2003, 13: 753-763
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[7] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!