作物学报 ›› 2011, Vol. 37 ›› Issue (01): 58-66.doi: 10.3724/SP.J.1006.2011.00058
谭贤杰1,2,宋燕春3,石云素3,程伟东1,吴子恺1,*,王天宇3,黎裕3,*
TAN Xian-Jie1,2,SONG Yan-Chun3,SHI Yun-Su3,CHENG Wei-Dong1,WU Zhi-Kai1,*,WANG Tian-Yu3,LI Yu3,*
摘要: Rubisco活化酶(RCA)是一种可激活光合作用关键酶Rubisco的伴侣蛋白,可通过对Rubisco的活性调节决定植物的碳同化效率。为了研究玉米ZmRCA1的多态性,本研究参考GenBank中编码玉米Rubisco活化酶的ZmRCA1基因组序列设计引物对玉米微核心种质的95份自交系的ZmRCA1进行测序,获得长约1 680 bp的基因组序列。多态分析表明,在1 680 bp的区间内共发现22个SNP和8个InDel,其中5个SNP和1个InDel变异产生氨基酸序列改变;频率在0.1以上的13个多态性位点共形成27种单倍型,利用6个多态性位点就可以分辨约90%的单倍型。ZmRCA1基因具有高度序列保守性,基因DNA序列相似性为97.9%,而氨基酸序列的相似性则达99.8%;中性检验表明ZmRCA1基因符合中性进化模型假设,没有发生纯化选择。
[1]Ellis R J. The most abundant protein in the world. Trends Biochem Sci, 1979, 4: 241–244 [2]Parry M A J, Madgwick P J, Carvahlo J F C, Andralojc P J. Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J Agric Sci, 2007, 145: 31–43 [3]Portis A R. Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 415–437 [4]Martinez B E, Molina G J, Sanchez J E. Regulation of Rubisco activity during grain-fill in maize: possible role of Rubisco activase. J Agric Sci, 1997, 128: 155–161 [5]Wong X-Y(翁晓燕), Mao W-H(毛伟华).The relationship of Rubisco activase to Rubisco and photosynthetic rate during development of rice leaf. Acta Agric Zhejiang (浙江农业学报), 2000, 12(3): 121–125 (in Chinese with English abstract) [6]Jiang D-A(蒋德安), Lu Q(陆庆), Weng X-Y(翁晓燕). Role of key enzymes for photosynthesis in the diurnal of photosynthetic rate in rice. Acta Agron Sin (作物学报), 2001, 27(3): 301–307 (in Chinese with English abstract) [7]Zhang G(张国), Li B(李滨), Zhou Q(邹琦).Cloning and expression of Rubisco activase gene in wheat. Chin Bull Bot (植物学通报), 2005, 22(3): 313–319 (in Chinese with English abstract) [8]Ristic Z, Momcilovic I, Budovinik U, Vara Prasad P V, Fu J, Deridder B P, Elthon T E, Mladenov N. Rubisco activase and wheat productivity under heat-stress conditions. J Exp Bot, 2009, 60: 4003–4014 [9]Parry M A J, Keys A J, Madgwick P J,Carmo-Silva A E, Andralojc P J.Rubisco regulation: a role for inhibitors. J Exp Bot, 2008, 59: 1569–1580 [10]Salvucci M E, van de Loo F J, Stecher D. 2003. Two isoforms of rubisco activase in cotton, the products of separate genes not alternative splicing. Planta, 2003, 216: 736–744 [11]Vargas-Suarez M, Ayala-Ochoa A, Lozano-Franco J, Garcia-Torres I, Diaz-Quinonez A, Ortiz-Navarrete V F, Sanchez-de-Jimenez E. Rubisco activase chaperone activity is regulated by a post translational mechanism in maize leaves. J Exp Bot, 2004, 55: 2533–2539 [12]Sage R F, Way D A, Kubien D S.Rubisco, Rubisco activase, and global climate change. J Exp Bot, 2008, 59: 1581–1595 [13]Shen J B, Ogren W L. Alteration of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase activity in response to changing partial pressure O2 and light in Phaseolus vulgaris. Plant Physiol, 1992, 99: 1201–1207 [14]Kurek I, Chang T K., Bertain S M, Madrigal A, Liu L, Lassner M W, Zhu G. Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell, 2007, 19: 3230–3241 [15]Li Y, Shi Y, Cao Y, Wang T. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genet Resour Crop Evol, 2004, 51: 845–852 [16]Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15 [17]Watterson G A. On the number of segregating sites in genetical models without recombination. Theor Pop Biol, 1975, 7: 256–276 [18]Nei M,Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269–5273 [19]Tajima F. Statistical method for testing the neutral mutationhypothesis by DNA polymorphism. Genetics, 1989, 123: 585–595 [20]Fu Y X., Li W H. Statistical tests of neutrality of mutations.Genetics, 1993, 133: 693–709 [21]Brookes A J. The essence of SNPs. Gene, 1999, 234: 177–186 [22]Clifford R, Edmonson M, Hu Y, Nguyen C, Scherpbier T, Buetow K H. Expression-based genetic/physical maps of single nucleotide polymorphisms identified by the cancer genome anatomy project. Genome Res, 2000, 10: 1259–1265 [23]Zondrvan K T, Cardon R C. The complex interplay among factors that influence allelic association. Nat Rev Genet, 2004, 5: 89–100 [24]Deutsch S, Iseli C, Bucher P, Antonarakis S E, Scott H S. A cSNP map and database for human chromosome 21. Genome Res, 2001, 11: 300–307 [25]Tenaillon M I, Sawkins M C, Long A D, Gaut RL, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp mays L.). Proc Natl Acad Sci USA, 2001, 98: 9161–9166 [26]Rafalski A. Applications of single nucleotide polymorphisms in crop plant genetics. Curr Opin Plant Biol, 2002, 5: 94–100 [27]Mogg R, Batley J, Hanley S, Edwards D, O’Sullivan H, Edwards K J. Characterising the flanking regions of Zea mays microsatellites reveals a large number of useful sequence polymorphisms. Theor Appl Genet, 2002, 105: 532–543 [28]Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, Rafalski A J. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2002, 3: 19 [29]Hanson M A, Gaut B S, Stec A O, Fuerstenberg S I, Goodman M M, Coe E H, Doebley J F. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics, 1996, 143: 1395–1407 [30]Palaisa K A, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell, 2003, 15: 1795–1806 [31]Zhang L-B, Zhu Q, Wu Z-Q, Ross-Ibarra J, Gaut B S, Ge S, Sang T. Fast fixation of non-shattering allele but slow domestication of rice. New Phytologist, 2009, 184: 708–720 [32]Wang R L, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. Nature, 1999, 398, 236–239 [33]Flint-Garcia S A, Thomsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357–374 [34]Seng K C, Seng C K. The success of the genome-wide association approach: a brief story of a long struggle. Eur J Human Genet, 2008, 16: 554–564 [35]Patil N, Berno A J, Hinds D A, Barrett W A, Doshi J M, Hacker C R, Kautzer C R, Lee D H, Marjoribanks C, McDonough D P, Nguyen B T, Norris M C, Sheehan J B, Shen N, Stern D, Stokowski R P, Thomas D J, Trulson M O, Vyas K R, Frazer K A, Fodor S P, Cox D R. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science, 2001, 294: 1719–1723 |
[1] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[2] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[3] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[4] | 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49. |
[5] | 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350. |
[6] | 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203. |
[7] | 马小定,唐江红,张佳妮,崔迪,李慧,黎毛毛,韩龙植. 东乡野生稻与日本晴多态性标记的开发[J]. 作物学报, 2019, 45(2): 316-321. |
[8] | 张宏娟,李玉莹,苗丽丽,王景一,李超男,杨德龙,毛新国,景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数[J]. 作物学报, 2019, 45(11): 1615-1627. |
[9] | 赵庆英, 张瑞娟, 王瑞良, 高建华, 韩渊怀, 杨致荣, 王兴春. 基于名优谷子品种晋谷21全基因组重测序的分子标记开发[J]. 作物学报, 2018, 44(05): 686-696. |
[10] | 冯博,许理文,王凤格,薛宁宁,刘文彬,易红梅. 玉米InDel分子标记20重PCR检测体系的建立[J]. 作物学报, 2017, 43(08): 1139-1148. |
[11] | 初志战,郭海滨,曾栋昌,刘耀光. 籼粳稻基因组295个InDel标记的开发[J]. 作物学报, 2016, 42(06): 932-941. |
[12] | 史学晖,李英慧,于佰双,郭勇,王家军,邱丽娟. 大豆胞囊线虫主效抗病基因Rhg4(GmSHMT)的CAPS/dCAPS标记开发和利用[J]. 作物学报, 2015, 41(10): 1463-1471. |
[13] | 王根平,毕惠惠,孙永伟,王成社,夏兰琴. 红粒小麦Tamyb10单倍型检测及其与穗发芽抗性的关系[J]. 作物学报, 2014, 40(06): 984-993. |
[14] | 姜晓东,郭刚刚,张京. Amy6-4基因遗传多样性及其与α-淀粉酶活性的关联分析[J]. 作物学报, 2014, 40(02): 205-213. |
[15] | 韩淑晓,刘全兰,董洁,陈建省,田纪春. 小麦品种(系)抗叶锈病基因Lr10位点基因型的多样性[J]. 作物学报, 2013, 39(11): 1983-1991. |
|