欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 793-802.doi: 10.3724/SP.J.1006.2011.00793

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用红色荧光蛋白标记的轮枝镰孢研究病原菌对玉米根系的系统侵染和定殖

吴磊1,2,王晓鸣2,*,徐荣旗3,李洪杰2,*   

  1. 1 河北科技师范学院生命科技学院,河北昌黎066600;2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081;3 中国农业科学院生物技术研究所,北京100081
  • 收稿日期:2010-10-20 修回日期:2011-03-08 出版日期:2011-05-12 网络出版日期:2011-03-24
  • 通讯作者: 李洪杰, hongjie@caas.net.cn; 王晓鸣, E-mail: wangxm@mail.caas.net.cn
  • 基金资助:

    本研究由国家“十一五”科技支撑计划项目(2006BAD02A16-3)资助。

Root Infection and Systematic Colonization of DsRed-labelled Fusarium verticillioides in Maize

WU Lei1,2,WANG Xiao-Ming2,*,XU Rong-Qi3,LI Hong-Jie2,*   

  1. 1 College of Life Science and Technology, Hebei Normal University of Science & Technology, Changli 066600, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing 100081, China; 3 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-10-20 Revised:2011-03-08 Published:2011-05-12 Published online:2011-03-24
  • Contact: 李洪杰, hongjie@caas.net.cn; 王晓鸣, E-mail: wangxm@mail.caas.net.cn

摘要: 采用农杆菌介导法将红色荧光蛋白基因DsRed转入轮枝镰孢Fv-1菌株,利用荧光显微镜观察轮枝镰孢在玉米自交系B73根部定殖和生长的规律。土壤中的轮枝镰孢首先侵染玉米的须根等组织,并在其中大量增殖,随后沿主根向上侵染,以菌丝的形式扩展到地上组织。有些孢子附着在根表皮的纹理中,萌发形成菌丝而扩展;有的则向内侵染附着的细胞,然后再继续向周边侵染。由根内部向上侵染的菌丝多沿着细胞间隙上行,有些也会穿行在不同细胞之间。分析接种不同时间轮枝镰孢在玉米根和茎基部组织形成的单菌落数量(CFU)发现,轮枝镰孢在根部的CFU值随时间逐渐减小,而茎基部的CFU值则呈逐渐增大的趋势。这说明土壤中的轮枝镰孢能够通过根系侵染途径危害地上部组织。本研究的结果为进一步探明轮枝镰孢和玉米之间的互作关系,以及其他土传真菌与植物之间的互作提供了有益的参考。

关键词: 玉米, 轮枝镰孢, DsRed, 互作, 系统定殖, CFU (colony forming unit)

Abstract: Fusarium verticillioides (Sacc.) Nirenberg [syn. F. moniliforme J. Sheld., teleomorph: Gibberella fujikuroi (Sawada) Ito in Ito & K. Kimura] is an important causal agent of diseases in maize (Zea mays L.) worldwide, which invades maize plants at all growth stages. This filamentous fungus not only incites obvious symptoms on maize ear, stem, root, and seedling, but also is able to infect plants without any visible symptom (endophytic infection). This makes difficult to detect interaction between this fungus and its hosts.Fluorescent reporter gene-labelled filamentous fungus permits in vitro and in planta monitoring growth and development of the fungus. In this study, gene DsRed encoding red fluorescent protein was delivered into F. verticillioides strain Fv-1 via Agrobacterium tumefaciens-mediated transformation. Using the DsRed-tagged F. verticillioides, systemic colonization of the fungus in roots and stems of the susceptible maize inbred line B73 was investigated. The aim of this study was to understand the interaction between F. verticillioides and maize. The fungus invaded and multiplied inside the lateral root tissues. Some conidia tended to colonize on the veins of the maize root surface and grew along the veins after their germinaiton. Others penetrated the plant cells where they attached and formed hyphae for attacking other cells nearby. Usually, the mycelia migrated from root to stem through intercellular parts of tissues, while some mycelia run across different host cells. Analysis of colony forming unit (CFU) from diseased plants demonstrated that following inoculation the CFU values from roots tended to decrease, but those from stems inclined to increase. This indicates that F. verticillioides is able to attack the aboveground parts of plant via systemic colonization on roots. The results from the present study are useful in disclosing the interaction between F. verticillioides and maize, and can be extended to studying interactions between other soil-borne fungi and plants.

Key words: Maize, Fusarium verticillioides, DsRed, Interaction, Systemic colonization, CFU (colony forming unit)

[1]Leden?an T, Šimi? D, Brki? I, Jambrovi? A, Zduni? Z. Resistance of maize inbreds and their hybrids to fusarium stalk rot. Czech J Genet Plant Breed, 2003, 39: 15–20
[2]Wang X-M(王晓鸣), Jin Q-M(晋齐鸣), Shi J(石洁), Wang Z-Y(王作英), Li X(李晓). The status of maize diseases and the possible effect of variety resistance on disease occurrence in the future. Acta Phytopathol Sin (植物病理学报), 2006, 36(1): 1–11 (in Chinese with English abstract)
[3]Kommedahl T, Windels C E. Root-, stalk-, and ear-infecting Fusarium species on corn in the USA. In: Nelson P E, Toussoun T A, Cook R J eds. Fusarium: Diseases, Biology and Taxonomy. Pennsylvania State University Press, University Park, Pennsylvania, USA, 1981. pp 94–103
[4]Bacon C W, Hinton D M. Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot, 1996, 74: 1195–1202
[5]Oren L, Ezrati S, Cohen D, Sharon A. Early events in the Fusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate. Appl Environ Microbiol, 2003, 81: 556–565
[6]Foley D C. Systemic infection of corn by Fusarium moniliforme. Phytopathology, 1962, 52: 870–872
[7]Kedera C J, Leslie J F, Claflin L E. Systemic infection of corn by Fusarium moniliforme. Phytopathology, 1992, 82: 1138
[8]Munkvold G P, McGee D C, Carlton W M. Importance of different pathways for maize kernel infection by Fusarium verticillioides. Phytopathology, 1997, 97: 209–217
[9]Headrick J, Pataky J. Maternal influence on the resistance of sweet corn lines to kernel infection by Fusarium moniliforme. Phytopathology, 1991, 81: 268–274
[10]Munkvold G P, Carlton W M. Influence of inoculation method on systemic Fusarium moniliforme infection of maize plants grown from infected seeds. Plant Dis, 1997, 81: 211–216
[11]Munkvold G P, Helmich R L, Showers W B. Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology, 1997, 87: 1071–1077
[12]Duncan K E, Howard R J. Biology of maize kernel infection by Fusarium verticillioides. Mol Plant-Microbe Interact, 2010, 23: 6–16
[13]Leslie J F, Pearson C, Nelson P, Toussoun T. Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern United States. Phytopathology, 1990, 80: 343–350
[14]Rheeder J P, Marasas W F O. Fusarium species from plant debris associated with soils from maize production areas in the Transkei region of South Africa. Mycopathologia, 1998, 143: 113–119
[15]Lübeck M, Knudsen I M B, Jensen B, Thrane U, Janvier C, Jensen D F. GUS and GFP transformation of the biocontrol strain Clonostachysrosea IK726 and the use of these marker genes in ecological studies. Mycol Res, 2002, 106: 815–826
[16]von der Weid I, Artursson V, Seldin L, Jansson J K. Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World J Microbiol Biotechnol, 2005, 21: 8–9
[17]Mansouri S, Fakhoury A M. Developing molecular tools to study the Fusarium virguliforme soybean interaction. Phytopathology, 2006, 96: S72–S73
[18]Mark R S, Jason O, William P H. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J, 2005, 19: 440–442
[19]Jakobs S, Subramaniam V, Schonle A, Jovin T M, Hell S W. EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett, 2000, 479: 131–135
[20]Baird G S, Zacharias D A, Tsien R Y. Biochemistry, mutagenesis, and oligomerization of dsRED, a red fluorescent protein from coral. Proc Natl Acad Sci USA, 2000, 97: 11984–11989
[21]Rose A M, Maria A S, Valter A de B, Eduardo B, Roseli W, Marshall G Y, Marco A F R, Fábio O P, de Emanuel M S. Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol, 2008, 31: 932–937
[22]Sarrocco S, Falaschi N, Vergara M, Nicoletti F, Vannacci G. Use of Fusarium oxysporum f. sp. dianthi transformed with marker genes to follow colonization of carnation roots. J Plant Pathol, 2007, 89: 47–54
[23]Eckert M, Maguire K, Urban M, Foster S, Fitt B, Lucas J, Hammond-Kosack K. Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp. FEMS Microbiol Lett, 2005, 252: 67–74
[24]Mullins E D, Chen X, Romaine P, Raina R, Geiser D M, Kang S. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 2000, 91: 173–180
[25]Xu R-Q(徐荣旗), Wang J-N(汪佳妮), Chen J-Y(陈捷胤), Dai X-F(戴小枫). Analysis of T-DNA insertional flanking sequence and mutant phenotypic characteristics in Verticillium dahliae. Sci Agric Sin (中国农业科学), 2010, 43(3): 489–496 (in Chinese with English abstract)
[26]Nash S M, Snyder W C. Quantitative estimations by plate counts of propagules of the bean root rot fusarium in field soils. Phytopalhology, 1962, 52: 567–572
[27]Burgess L W, Liddell C M. Laboratory Manual for Fusarium Research. University of Sydney, Australia. 1983. p 162
[28]Andrews S, Pitt J I. Selective medium for isolation of Fusarium species and dematiaceous hyphomycetes from cereals. Appl Environ Microbiol, 1986, 51: 1235–1238
[29]Murillo I, Cavalarin L, Segundo S S. Cytology of infection of maize seedlings by Fusarium moniliforme and immunolocalization of the pathogenesis-related PRms protein. Phytopathology, 1999, 89: 737–747
[30]Howard R J. Breaching the outer barriers-cuticle and cell wall penetration. In: Carroll G, Tudzynski P eds. Plant Relationships, vol. 5A. New York, NY: Springer-Verlag, 1997. pp 43–60
[31]Money N P, Caesar-TonThat T C, Frederik B A, Henson J M. Melanin synthesis is associated with changes in hyphopodial turgor, permeability, and wall rigidity in Gaeumannomyces graminis var. graminis. Fungal Genet Biol, 1998, 24: 240–251
[32]Liu X-M(刘雪梅), Xiao J-G(肖建国). Histopathological study on infection process of wheat sheath blight Rhizoctonia cerealis. Mycosystema (菌物学报), 1999, 18(3): 288–293 (in Chinese with English abstract)
[33]Cai B-P(蔡邦平), Chen J-Y(陈俊愉), Zhang Q-X(张启翔), Guo L-D(郭良栋). A survey of Arbuscular mycorrhiza colonization in roots of Prunus mume in China. Acta Hort Sin (园艺学报), 2008, 35(4): 599–602 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!