欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1205-1211.doi: 10.3724/SP.J.1006.2011.01205

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆硬脂酸-ACP脱饱和酶基因启动子的克隆及其表达活性分析

张庆林1,赵艳2,**,李晓薇1,翟莹1,张艳1,王英1,李景文1,*,王庆钰1,*   

  1. 1 吉林大学植物科学学院, 吉林长春 130062; 2 齐齐哈尔大学生命科学与农林学院, 黑龙江齐齐哈尔 161006
  • 收稿日期:2011-01-04 修回日期:2011-03-27 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 王庆钰, E-mail: wqy414cn@yahoo.com.cn; 李景文, E-mail: lljjww998@sohu.com
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2008ZX08004-003),国家自然科学基金项目(30971808),吉林省科技发展计划重点项目(20080204),长春市科技局国际科技合作项目(08GH10)和“211”三期建设项目资助。

Cloning and Activity Analysis of Soybean SACPD-C Promote

ZHANG Qing-Lin1,ZHAO Yan2,**,LI Xiao-Wei1,ZHAI Ying1,ZHANG Yan1,WANG Ying1,LI Jing-Wen1,*,WANG Qing-Yu1,*   

  1. 1 College of Plant Science, Jilin University, Changchun 130062, China; 2 College of Life Science and Agro-Forestry, Qiqihaer University, Qiqihaer 161006, China
  • Received:2011-01-04 Revised:2011-03-27 Published:2011-07-12 Published online:2011-05-11
  • Contact: 王庆钰, E-mail: wqy414cn@yahoo.com.cn; 李景文, E-mail: lljjww998@sohu.com

摘要: 以吉豆2号基因组为模板,通过TAIL PCR方法,扩增得到大豆硬脂酸-ACP脱饱和酶基因启动子片段SACPD-Cp。PLACE在线启动子预测分析表明, 该序列中含有多种典型的种子特异性表达序列元件。将SACPD-Cp片段取代pCAMBIA1301质粒中的CaMV35S启动子,构建表达载体pCAM-SACPD-Cp,通过农杆菌介导法在大豆组织中进行瞬时表达,GUS组织化学染色和荧光定量研究其表达特性。结果表明, SACPD-Cp驱动GUS基因在种子中的表达活性是CaMV35S启动子的93.01%;SACPD-Cp启动子与现已知启动子无同源性,仅在大豆种子中检测到GUS活性,而在根、茎和叶组织中均未检测到GUS活性,证实 SACPD-Cp是一个新的种子特异性启动子。

关键词: 大豆, 硬脂酸-ACP脱饱和酶基因, 序列分析, 种子特异性启动子, 瞬时表达

Abstract: The SACPD-Cp promoter of soybean SACPD-C was isolated from the genomic DNA of soybean Jidou 2 by TAIL PCR. Promoter sequence analysis by PLACE showed that the cloned fragment contained a lot of the motifs that constituted the seed-specific cis-elements. Replacing CaMV35S promoter of pCAMBIA1301 with the SACPD-Cp fragment, the binary expression vector pCAM-SACPD-Cp was constructed. Transient expression by Agrobacterium tumefaciens mediated method, the histochemical GUS analysis and fluorometric GUS analysis were used for testing the expression of the GUS activity. The results indicated that GUS activity driven by SACPD-Cp fragment was 93.01% of that driven by CaMV35S promoter. The SACPD-Cp promoter did not have the homology compared with the reported promoters. GUS activity assays indicated that GUS was expressed only in seeds, but not in roots, stems and leaves, which suggests the SACPD-Cp is seed-specific promoter.

Key words: Soybean, SACPD-C gene, Sequence analysis, Seed-specific promoter, Transient expression

[1]Hwang Y S, Yang D, McCullar C. Wu L, Chen L, Pham P, Nandi S Huang N. Analysis of the rice endosperm-specific globulin promoter in transformed rice cells. Plant Cell Rep, 2002, 20: 842–847
[2]Kluth A, Sprunck S, Becker D, Lörz H, Lütticke S. 5′ deletion of a gbssI promoter region leads to changes in tissue and developmental specificities. Plant Mol Biol, 2002, 49: 669–682
[3]Mei C, Wassom J J, Widholm J M. Expression specificity of the globulin-1 promoter driven transgene (chitinase) in maize seed tissues. Maydica, 2004, 49: 255–265
[4]Li L, Wang X, Gai J, Yu D. Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) from soybean. DNA Sequence, 2008, 19: 28–36
[5]Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucl Acids Res, 1999, 27: 297–300
[6]Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002, 30: 325–327
[7]Hu X W, Liu S X, Guo J C, Li J T, Duan R J, Fu S P. Embryo and anther regulation of the mabinlin II sweet protein gene in Capparis masaikai Lev l. Funct Integr Genom, 2009, 9: 351–361
[8]Zhao Y(赵艳), Shi Y-L(史岩玲), Qian D-D(钱丹丹), Zhang Q-L(张庆林), Yan F(闫帆), Wang Q-Y(王庆钰), Zhang Y(张艳), Li J-W(李景文). Cloning and transient expression of soybean Lox3 promoter. Biotechnol Bull (生物技术通报), 2010, 9(9): 65–69 (in Chinese with English abstract)
[9]Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep, 1987, 5: 387–405
[10]Li J(李杰), Zhang F-C(张福城), Wang W-Q(王文泉). Advance in the study of higher plant promoter. Lett Biotechnol, 2006, 17: 685–688 (in Chinese with English abstract)
[11]Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P. An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. Plant J, 1998, 16: 53–62
[12]Washida H, Wu C Y, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F. Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol, 1999, 40: 1–12
[13]Kim M J, Kim J K, Shin J S, Suh M C. The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E- and G-box elements. Plant Mol Biol, 2007, 64: 453–466
[14]Yoshino M, Nagamatsu A, Tsutsumi K, Kanazawa A. The regulatory function of the upstream sequence of the β-conglycinin α subunit gene in seed-specific transcription is associated with the presence of the RY sequence. Genes Genet Syst, 2006, 81: 135–141
[15]Ezcurra I, Ellerström M, Wycliffe P, Stålberg K, Rask L. Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex necessary for seed—specific expression. Plant Mol Biol, 1999, 40: 699–709
[16]Chamberland S, Daigle N, Bernier F. The legumin boxes and the 3' part of a soybean beta-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants. Plant Mol Biol, 1992, 19: 937–949
[17]Wang G-L(王关林), Fang H-J(方宏筠). Plant Gene Engineering, 2nd edn (植物基因工程, 第2版). Beijing: Science Press, 2002. pp 744–745 (in Chinese)
[18]Wang A-Y(王爱云), Zhuang H-T(庄洪涛), Zhang H-Y(张增艳), Zhang X-W(张学文), Du L-P(杜丽璞), Ye X-G(叶兴国). Cloning and activity analysis of Zea mays ZmPR4 promoter in wheat immature embryonic calli. Acta Agron Sin (作物学报), 2010, 36(9): 1605–1609 (in Chinese with English abstract)
[19]Fu Y-P(付永平), Zhou H-T(周海涛), Wang P-W(王丕武). Cloning and identification of the seed specific promoter from soybean. J Northwest A&F Univ, 2009, 37(12): 105–118 (in Chinese with English abstract)
[20]Fujiwara T, Beachy R N. Tissue-specific and temporal regulation of a beta-connglycinin gene: roles of the R Y repeat and other cis-acting elements. Plant Mol Biol, 1994, 24: 261–272
[21]Luo T(罗通), Deng W-Y(邓鹜远), Zhang F-L(张富丽). Fatty acid desaturase. Chem Life (生命的化学), 2006, 26: 133–136 (in Chinese)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!