欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1196-1204.doi: 10.3724/SP.J.1006.2011.01196

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

DOF转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化

尹明智,官梅,肖钢,李栒,官春云*   

  1. 湖南农业大学油料作物研究所 / 国家油料作物改良中心湖南分中心, 湖南长沙 410128
  • 收稿日期:2010-12-24 修回日期:2011-03-26 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 官春云, E-mail: guancy2000@yahoo.com.cn
  • 基金资助:

    本研究由国家重点基础研究计划(973计划)项目(2006CB101600)资助。

RNAi Vector Construction of AtDof1.7 Transcription Factors and Genetic Transformation into Arabidopsis thaliana

YIN Ming-Zhi,GUAN Mei,XIAO Gang,LI Xun,GUAN Chun-Yun*   

  1. Oil Crops Institute / National Oil Crops Improvement Center, Hunan Agricultural University, Changsha 410128, China
  • Received:2010-12-24 Revised:2011-03-26 Published:2011-07-12 Published online:2011-05-11
  • Contact: 官春云, E-mail: guancy2000@yahoo.com.cn

摘要: DOF (DNA binding with one finger)转录因子是植物特有的转录因子家族,含有一个独特的富含Cys残基的单锌指DNA结合区域,在植物生长发育中参与多种生物学过程。本研究根据拟南芥AtDof1.7基因(GenBank登录号为AT1G51700)序列设计含有不同酶切位点的特异性扩增引物,以拟南芥总DNA为模板,扩增AtDof1.7基因片段,将AtDof1.7基因正向反向分别插入表达载体的相应位置,构建成AtDof1.7基因的RNA干扰载体pADOF1。利用改良的floral-dip方法将干扰载体pADOF1成功转入野生型拟南芥,经草甘膦抗性筛选和PCR检测获得5株阳性转基因植株。利用RT-PCR技术和气相色谱法分别分析了AtDof1.7基因的表达和种子脂肪酸组成,结果表明5株转基因植株中AtDof1.7基因的表达量不同程度低于野生型植株,种子油酸含量明显上升,亚麻酸含量明显下降,说明AtDof1.7转录因子与拟南芥种子脂肪酸代谢途径有一定的关系,为进一步研究其在脂肪酸代谢过程中的调控作用以及在油菜中研究该类转录因子的功能奠定了基础。

关键词: DOF转录因子, AtDof1.7, 拟南芥, RNA干扰载体, 脂肪酸代谢途径

Abstract: The Dof (DNA binding with one finger) transcription factorsare members of a family of plant-specific transcription factors that have a highly conserved DNA-binding domain, namely Dof domain which contains a single C2C2-type zinc-finger-like motif and specifically recognizes an (A/T)AAAG sequence as the recognition core. It suggests that the Dof transcription factors play diverse roles in specific biological processes in plants. Members of this protein family in plants are found to be involved in the gene regulation of many processes, but the roles in fatty acid metabolism are rarely reported. To investigate whether AtDof1.7 Dof transcription factor can regulate fatty acid metabolism, on the basis of the sequence of the gene (GenBank accession No. AT1G51700), we designed the specific primer containing different enzyme sites. With the template of Arabidopsis thaliana DNA, the AtDof1.7 gene fragment was isolated, which wasinserted into the expression vector by forward and reverse ways respectively. The RNA interference vector of pADOF1 containing AtDof1.7 gene fragment was constructed. By floral-dip method, pADOF1 was successfully transformed into wide-type Arabidopsis thaliana. Glyphosate resistance screening and PCR detection showed that five positive transgenic plants were obtained. The result of RT-PCR showed that transgenic plants had lower expression level of AtDof1.7 gene than the wild type. Fatty acid content was analyzed by gas chromatography which showed that the content of oleic acid increased and the content of linolenic acid decreased drastically in each transgenic plant compared with wide-type plants. These results indicated that AtDof1.7 transcription factor has certain relation with fatty acid metabolic pathway in Arabidopsis thaliana seed which provides a good foundation for further study on the function of AtDof1.7 transcription factor in fatty acid metabolic regulation.

Key words: DOF transcription factors, AtDof1.7, Arabidopsis thaliana, RNA interference vector, Fatty acid metabolic pathway

[1]Ashrafi K, Chang F Y, Watts J L, Fraser A G, Kamath R S, Ahringer J, Ruvkun G. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 2003, 421: 268-272
[2]Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2000, 97: 4985-4990
[3]Prasanth S G, Prasanth K V, Stillman B. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science, 2002, 297: 1026-1031
[4]Yanagisawa S. A novel DNA binding domain that may form a single zinc finger motif. Nucl Acid Res, 1995, 23: 3403-3410
[5]Yanagisawa S. The Dof family of plant transcription factor. Trends Plant Sci, 2002, 7: 555-560
[6]Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol, 2003, 3:17
[7]Shigyo M, Tabei N, Yoneyama T, Yanagisawa S. Evolutionary processes during the formation of the plant-specific Dof transcription factor family. Plant Cell Physiol, 2007, 48: 179-185
[8]Tsujimoto-Inui Y, Naito Y, Sakurai N, Suzuki H, Sasaki R, Takahashi H, Ohtsuki N, Nakano T, Yanagisawa S, Shibata D, Uchimiya H, Shinshi H, Suzuki K. Functional genomics of the DOF transcription factor family genes in suspension-cultured cells of Arabidopsis thaliana. Plan Biotechnol, 2009, 26: 15-28
[9]Mena M, Vicente-Carbajosa J, Schmidt R J, Pilar Carbonero. An endosperm-specific dof protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. Plant J, 1998, 16: 53-62
[10]Vicente-Carbajosa J, Moose S P, Parsons R L, Schmidt K J. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interact with the basic leucine zipper transcriptional activator opaque2. Proc Natl Acad Sci USA, 1997, 94: 7685-7690
[11]Mena M, Cejudo F J, Isabel-Lamoneda I, Pilar Carbonero. A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol, 2002, 130: 111-119
[12]Isabel-LaMoneda I, Díaz I, Martínez M, Mena M, Pilar Carbonero. SAD: a new DOF protein from barley that activates transcription of a cathepsin B-like thiol protease gene in the aleurone of germinating seeds. Plant J, 2003, 33: 329-340
[13]Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-Box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293-297
[14]Wang H W, Zhang B, Hao Y J, Huang J, Tian A G, Liao Y, Zhang J S, Chen S Y. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J, 2007, 52: 716-729
[15]Yanagisawa S, Sheen J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell, 1998, 10:75-89
[16]Yanagisawa S. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J, 2000, 21: 281-288
[17]Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T. Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA, 2004, 101: 7833-7838
[18]Pan L-F(潘丽峰). Improvement of Tobacco Nitrogen Utilization Rate by Increasing Expression of Dof1. MS Dissertation of Kunming University of Science and Technology, 2007 (in Chinese with English abstract)
[19]Chen J-Q(陈锦清), Lang C-X(郎春秀), Hu Z-H(胡张华), Liu Z-H(刘智宏), Huang R-Z(黄锐之). Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J Agric Biotechnol (农业生物技术学报), 1999, 7(4): 316-320 (in Chinese with English abstract)
[20]Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce J L, Herrera-Estrella L. Improving transformation efficiency of Arabidopsis thaliana by modifying the floral-dip method. Plant Mol Biol Rep, 2004, 22: 63-70
[21]Du P-F(杜培粉), Wu L-T(伍林涛), Yao Y-T(姚远颋), Yin F(尹峰), Ruan Y(阮颖), Liu C-L(刘春林). Construction of the RNAi vector of AtTPSO3 Gene and Arabidopsis transformation. Mol Plant Breed (分子植物育种), 2009, 7(3): 451-455 (in Chinese with English abstract)
[22]Li M(李明), Jiang S-L(姜世玲), Wang Y-Q(王幼群), Liu G-Q(刘国琴). Post-transcriptional silencing signal of gene can be fast two-way transfer in grafted Arabidopsis. Sci Bull (科学通报), 2006, 52: 142-147 (in Chinese)
[23]Stoutjesdijk P A, Singh S P, Hurlstone C J, Waterhouse P A, Green A G. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol, 2002, 129: 1723-1731
[24]Wesley S V, Helliwell C A, Smith N A, Wang M B, Rouse D T, Liu Q, Gooding P S, Singh S P, Abbott D, Stoutjesdijk P K, Robinson S P, Gleave A P, Green A G, Waterhouse P M. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J, 2001, 27: 581-590
[25]Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D. The two genes homologous to Arabidopsis Fae1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Gene, 1998, 96: 852-858
[26]Gupta A, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D, Pradhan A K. Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in Fae1 gene. Theor Appl Genet, 2004, 108: 743-749
[27]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: Seed oil content and fatty acid composition. Heredity, 2003, 90: 39-48
[28]Liu X-P(刘雪平), Tu J-X(涂金星), Liu Z-W(刘志文), Chen B-Y(陈宝元), Fu T-D(傅廷栋). Construction of a molecular marker linkage map and its use for QTL analysis of erucic acid content in Brassica napus L. Acta Agron Sin (作物学报), 2005, 31 (3): 275-282 (in Chinese with English abstract)
[29]Hu X Y, Sullivan-Gilbert M, Gupta M, Thompson S A. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497-507
[30]Scheffler J A, Sharpe A G, Schmidt H, Sperling P, Parkin I A P, Lühs W, Lydiate D J, Heinz E. Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet, 1997, 94: 583-591
[31]Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe T J. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor Appl Genet, 1998, 96: 177-186
[32]Tanhuanpaa P, Vilkki J, Vihinen M. Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp.oleifera). Mol Breed, 1998, 4: 543-550
[33]Stoutjesdijkl P A, Hurlestone C, Singh S P, Green A G. High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous D12-desaturases. Biochem Soc Transact, 2000, 28: 938-940
[34]Peng Q, Hu Y, Wei R, Zhang Y, Guan C Y, Ruan Y, Liu C L. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep, 2010, 29: 317-325
[35]Schwartzbeck J L, Jung S, Abbott A G, Mosley E, Lewis S, Pries G L, Powell G L. Endoplasmic oleoyl-PC desaturase references the second double bond. Phytochemistry, 2001, 57: 643-652
[36]Maher L, Burton W, Salisbury P, Debonte L, Deng X M. High oleic, low linolenic (HOLL) specialty canola development in Australia. The 12th International Rapeseed Congress, 2007. pp 22-24
[37]Carré P, Evrard J, Judde A, Labalette F, Mazette S. Technological performances of low linolenic / high oleic rapeseed oils for food and non-food application. The 12th International Rapeseed Congress, 2007. pp 152-159
[38]Tu J-X(涂金星), Zhang D-X(张冬晓), Zhang Y(张毅), Fu T-D(傅廷栋). Discussion on some standards of variety registration and breeding goals of Brassica napus in China. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(3): 350-352 (in Chinese with English abstract)
[1] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[2] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[3] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[4] 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808.
[5] 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478.
[6] 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695.
[7] 宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析[J]. 作物学报, 2015, 41(05): 708-716.
[8] 赵青平,赵翔,慕世超,肖慧丽,张骁. 拟南芥下胚轴向光弯曲P2SA2基因的克隆与功能鉴定[J]. 作物学报, 2015, 41(04): 585-592.
[9] 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573.
[10] 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578.
[11] 张高阳,祁建民,徐建堂,牛小平,张雨佳,张立武,陶爱芬,方平平,林荔辉. 圆果黄麻纤维素合成酶基因CcCesA1的克隆、反义载体构建及转化拟南芥[J]. 作物学报, 2014, 40(05): 816-822.
[12] 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351.
[13] 刘江,孙全喜,李新征,亓宝秀. 球等鞭金藻Δ5去饱和酶基因IgD5在拟南芥中的功能鉴定[J]. 作物学报, 2013, 39(05): 928-934.
[14] 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569.
[15] 习雨琳,周朋,宋梅芳,李志勇,孟凡华,杨建平. 拟南芥RBCS-1A基因受光调节表达模式及其启动子遗传转化应用评价[J]. 作物学报, 2012, 38(09): 1561-1569.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!