作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1186-1195.doi: 10.3724/SP.J.1006.2011.01186
宋方威1,2,彭惠茹1,2,刘婷1,2,张义荣1,孙其信1,2,倪中福1,2,*
SONG Fang-Wei1,2,PENG Hui-Ru1,2,LIU Ting1,2,ZHANG Yi-Rong1,SUN Qi-Xin1,2,NI Zhong-Fu1,2,*
摘要: 以玉米强优势杂交种组合豫玉22及其重组近交系为材料,按照TTC (triple testcross)遗传交配设计,组配了270个测交后代的TTC群体。利用复合区间作图法,对控制株高与穗位高的QTL进行了分析,分别检测到20和17个主效QTL,其中超显性位点最多(11个和8个),加性次之(5个和6个),显性(2个和0个)和部分显性较少(2个和3个)。分析发现,存在同时控制株高与穗位高杂种优势的QTL区域,即Bin1.06区域(umc2151~umc1122)、Bin3.05区域(umc2127~umc2166~ umc1539)以及Bin7.03区域(umc1865~umc1888),这也与在各个环境中株高与穗位高的相关性吻合。另外,还分别检测到两性状4个和7个QTL与遗传背景之间的互作,22对和12对标记间的互作,分别解释表型变异的3.26%~16.58%和3.44%~22.41%,说明上位性也可能与这两个性状及其杂种优势的形成有重要关系。
[1]Shull G H. The composition of a field of maize. Am Breeders Assoc Rep, 1908, 4: 196-301 [2]Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32: 627-628 [3]East E M. Heterosis. Genetics, 1936, 21: 375-397 [4]Hochholdinger F, Hoeckera N. Towards the molecular basis of heterosis. Trend Plant Sci, 2007, 12: 427-432 [5]Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA, 2006, 103: 12981-12986 [6]Lu H, Romero-Severson J, Bernarbo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003, 107: 494-502 [7]Kusterer B, Muminovic J, Utz H F, Piepho H P, Barth S, Heckenberger M, Meyer R C, Altmann T, Melchinger A E. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics, 2007, 175: 2009-2017 [8]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular makers. Genetics, 1995, 140: 745-754 [9]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737-1753 [10]Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885-1895 [11]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574-2579 [12]Tang J-H(汤继华), Yan J-B(严建兵), Ma X-Q(马西青), Teng W-T(滕文涛), Meng Y-J(孟义江), Dai J-R(戴景瑞), Li J-S(李建生). Genetic dissection for grain yield and its components using an immortalized F2 population in maize. Acta Agron Sin (作物学报), 2007, 33(8): 1299-1303 (in Chinese with English abstract) [13]Tang J H, Yan J B, Ma X Q, Teng W T, Wu W R, Dai J R, Dhillon B S, Melchinger A E, Li J S. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalize F2 population. Theor Appl Genet, 2010, 120: 333-340 [14]Li Z-K(李卓坤), Xie Q-G(谢全刚), Zhu Z-L(朱占玲), Liu J-L(刘金良), Han S-X(韩淑晓), Tian B(田宾), Yuan Q-Q(袁倩倩), Tian J-C(田纪春). Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin (作物学报), 2010, 36(5): 771-778 (in Chinese with English abstract) [15]Xu Q-Z(徐庆章), Wang Q-C(王庆成), Niu Y-Z(牛玉贞), Wang Z-X(王忠孝), Zhang J(张军). Studies on relationship between plant type and canopy photosynthesis in maize. Acta Agron Sin (作物学报), 1995, 21(4): 492-496 (in Chinese with English abstract) [16]Salas Fernandez M G, Becraft P W, Yin Y H, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci, 2009, 14: 454-461 [17]Beavis W D, Grant D, Albertsen M C, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141-145 [18]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from 2 elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839 [19]Lin Y R, Schertz K F, Paterson A H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics, 1995, 141: 391-411 [20]Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄益勤), Shi Y-G(石永刚), Li J-S(李建生), Zheng Y-L(郑用琏). Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin Sci Bull (科学通报), 2003, 48(23): 2601-2607 (in Chinese) [21]Lan J-H(兰进好), Chu D(褚栋). Study on the genetic basis of plant height and ear height in maize (Zea mays L.) by QTL dissection. Hereditas (遗传), 2005, 27(6): 925-934(in Chinese with English abstract) [22]Tang H(汤华), Yan J-B(严建兵), Huang Y-Q(黄益勤), Zheng Y-L(郑用琏), LI J-S(李建生). QTL mapping of five agronomic traits in maize. Acta Genet Sin (遗传学报), 2005, 32(2): 203-209 (in Chinese with English abstract) [23]Yang J-P(杨俊品), Rong T-Z(荣廷昭), Xiang D-Q(向道权), Tang H-T(唐海涛), Huang L-J(黄烈健), Dai J-R(戴景瑞). QTL mapping of quantitative traits of maize. Acta Agron Sin (作物学报), 2005, 31(2): 188-196 (in Chinese with English abstract) [24]Zhang Z M, Zhao M J, Ding H P, Rong T Z, Pan G T. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian J Genet, 2006, 42: 306-310 [25]Tang J-H(汤继华), Ma X-Q(马西青), Teng W-T(滕文涛), Yan J-B(严建兵), Wu W-R(吴为人), Dai J-R(戴景瑞), Li J-S(李建生). Detection of heterotic locus and quantitative trait loci for plant height using an immortalized F2 population in maize. Chin Sci Bull (科学通报), 2006, 51(24): 2864-2869 (in Chinese) [26]Yu Y-T(于永涛), Zhang J-M(张吉民), Shi Y-S(石云素), Song Y-C(宋燕春), Wang T-Y(王天宇), Li Y(黎裕). QTL analysis for plant height and leaf angle by using different populations of maize. J Maize Sci (玉米科学), 2006, 14(2): 88-92 (in Chinese with English abstract) [27]Wang Y, Yao J, Zhang Z F, Zheng Y L. The comparative analysis based on maize integrated QTL map and meta-analysis of plant height QTLs. Chin Sci Bull, 2006, 51: 2219-2230 [28]Zhang Z-M(张志明), Zhao M-J(赵茂俊), Rong T-Z(荣廷昭), Pan G-T(潘光堂). SSR linkage map construction and QTL identification for plant height and ear height in maize (Zea mays L.). Acta Agron Sin (作物学报), 2007, 33(2): 341-344 (in Chinese with English abstract) [29]Frascaroli E, Cané M A, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pè M E. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics, 2007, 176: 625-644 [30]Kusterer B, Piepho H-P, Utz H F, Schön C C, Muminovic J, Meyer R C, Altmann T, Melchinger A E. Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics, 2007, 177: 1839-1850 [31]Yang X-J(杨晓军), Lu M(路明), Zhang S-W(张世煌), Zhou F(周芳), Qu Y-Y(曲延英), Xie C-X(谢传晓). QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas (遗传), 2008, 30(11): 1477-1486 (in Chinese with English abstract) [32]Shi Y-S(石云素), Yu Y-T(于永涛), Song Y-C(宋燕春), Liu Z-Z(刘志斋), Li Y(黎裕), Wang T-Y(王天宇). QTL identification for plant height in a new dwarf germplasm of maize. Acta Agron Sin (作物学报), 2010, 36(2): 256-260 (in Chinese with English abstract) [33]Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y, Zheng Y. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed, 2010, 129: 376-384 [34]Kearsey M J, Jinks J L. A general method of detecting additive, dominance and epistatic variation for metrical traits: I. Theory. Heredity, 1968, 23: 403-409 [35]Kearsey M J, Pooni H S, Syed N H. Genetics of quantitative traits in Arabidopsis thaliana. Heredity, 2003, 91: 456-464 [36]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468 [37]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTL with epistatic effects and QTL×environment interactions by mixed model approaches, Theor Appl Genet, 1999, 99: 1255-1264 [38]Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigation of quantitative trait loci in maize: II. Factors in?uencing yields and its component traits. Crop Sci, 1987, 27: 639-648 [39]Graham G I, Wolff D W, Stuber C W. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci, 1997, 37: 1601-1610 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[12] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[13] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[14] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[15] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
|