欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1212-1218.doi: 10.3724/SP.J.1006.2011.01212

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米异交不亲和基因Ga1-S的蛋白质组分析

刘怀华,王莉雯**,刘旭,马侠,宁丽华,张华,崔德周,姜川,陈化榜*   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室 / 山东省作物生物学重点实验室,山东泰安271018
  • 收稿日期:2010-11-16 修回日期:2011-03-28 出版日期:2011-07-12 网络出版日期:2011-04-12
  • 通讯作者: 陈化榜, E-mail: hbchen@sdau.edu.cn, Tel: 0538-8249939
  • 基金资助:

    本研究由国家自然科学基金项目(30971788), 中国科学院所级领域前沿探索项目和山东省农业良种重大课题(鲁农良种字2008-6)资助。

Proteomic Analyses of the Maize Cross Incompatibility Gene Ga1-S

LIU Huai-Hua,WANG Li-Wen**,LIU Xu,MA Xia,NING Li-Hua,ZHANG Hua,CUI De-Zhou,JIANG Chuan,CHEN Hua-Bang*   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / Agronomy College, Shandong Agricultural University, Tai’an 271018, China
  • Received:2010-11-16 Revised:2011-03-28 Published:2011-07-12 Published online:2011-04-12
  • Contact: 陈化榜, E-mail: hbchen@sdau.edu.cn, Tel: 0538-8249939

摘要: 为了研究玉米异交不亲和的蛋白表达机制,以玉米(Zea mays L.)异交不亲和基因Gal-S的一对近等基因系W22(GG)与w22(gg)为材料,组配自交(GG×GG)、正交(gg×GG)与反交(GG×gg) 3个组合。首先采用荧光显微技术, 观察比较了3个组合中花粉管在花丝中的生长过程;其次采用IEF/SDS-PAGE双向凝胶电泳与基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)技术,比较研究了授粉后10 h自交与反交母本W22(GG)花丝蛋白质组的特异表达差异。结果表明,授粉后10 h,自交与正交花粉管伸长可达花丝基部,而反交花丝基部未观察到花粉管;自交与反交母本W22(GG)花丝蛋白质组共检测到25个差异蛋白质点,其中15个在自交中特异表达,10个在反交中特异表达;通过MALDI-TOF-MS质谱测序和MASCOT序列分析,注释了12个蛋白质点;其中自交中特异表达的蛋白质点11、12、14和异交中特异表达的蛋白质点18、22、24可能与玉米异交不亲和密切相关。

关键词: 玉米, 异交不亲和, Ga1-S, 蛋白质组, 双向电泳, 质谱分析

Abstract: The objective of this paper was to study the cross incompatibility gene Ga1-S in maize through proteomic approach. Near isogonic lines of Ga1-S gene, W22 (GG) and w22 (gg), were used to make the crosses of GG×GG, gg×GG,and GG×gg respectively. First,we observed the growth process of pollen tubes grown into silks in three crosses by fluorescence microscopy; second, total silk proteins were extracted from silks of the W22 (GG) at 10 h after pollination. Total proteins were extracted by TCA/Acetone, separated by two-dimensional gel electrophoresis (2-DE) and analyzed through MALDI-TOF-MS mass spectrometry. The results indicated that pollen tube couldn’t grow into silks base in the cross of GG×gg, but could in the other two crosses; In the silk proteome of GG×GG and GG×gg , there were 25 differentially expressed proteins, including 15 specifically expressed in GG×GG, and 10 specifically expressed in GG×gg. And 12 of them were annotated in various databases by MALDI-TOF-MS and MASCOT analyses. Proteins 11, 12, 14, 18, 22 and 24 presumably play important roles in the maize cross incompatibility.

Key words: Zea mays L., Cross incompatibility, Ga1-S, Proteome, 2-DE, MALDI-TOF-MS

[1]Schwarts D. The analysis of case of cross sterility in maize. Proc Natl Acad Sci USA, 1950, 36: 719–724
[2]Lino De la C L, Jose de J S G. The gametophyte factor1(Ga1) in Mexican commercial hybrids of maize. Rev Fitotec Mex, 2008, 31: 57–65
[3]Nelson O E. The gametophyte factors of maize. In: Freeling M, Walbot V (editors) The Maize Handbook. New York, Inc: Springer-Verlag, 1994. pp 496–503
[4]Ashman R B. Modification of cross-sterility in maize. J Hered, 1975, 66: 5–9
[5]Kermicle J L, Allen J O. Cross incompatibility between maize and teosinte. Maydica, 1990, 35: 399–408
[6]Andreas L, Irina K, Kanok-orn S, Thomas D. Sporophytic control of pollen tube growth and guidance in maize. J Exp Bot, 2010, 61(3): 673–682
[7]Kermicle J L, Evans M M S. Pollen-pistil barriers to crossing in maize and teosinte result from incongruity rather than active rejection. Sexual Plant Reproduction, 2005, 8: 187–194
[8]Kho Y O, Baer J. Observing pollen tubes by means of fluorescence. Euphytica, 1968, 17: 298–302
[9]2-D Electrophoresis using immobilized pH gradients: Principles and Methods. A Laboratory Manual. Amersham Biosciences, 80-6429-60
[10]Von Besser K, Frank A C, Johnson M A, Preuss D. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development, 2006, 133: 4761–4769
[11]Galinha C, Bilsborough G, Tsiantis M. Hormonal input in plant meristems: a balancing act. Seminars in Cell & Developmental Biology, 2009, 20: 1149–1156
[12]Duan T-L(段桃利), Mu J-Y(牟锦毅), Tang Q-L(唐祈林), Rong T-Z(荣廷昭), Wang P(王培). Sexual incompatibility between maize and its wild relatives Tripsacum L. and Coix L. Acta Agron Sin (作物学报), 2008, 34(9): 1656–1661 (in Chinese with English abstract)
[13]Wen L, Liu G, Li S Q. Proteomic analysis of anthers from Honglian cytoplasmic male sterility line rice and its corresponding maintainer and hybrid. Botanical Studies, 2007, 48: 293–309
[14]Bitto E, Bingman C A, McCoy J G, Allard S T M, Wesenberg G E, Phillips Jr G N. The structure at 1.6 A resolution of the protein product of the At4g34215 gene from Arabidopsis thaliana. Acta Crystallographica Section D, 2005, 61: 1655–1661
[15]Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 1997, 10: 1–6
[16]Shaw J F, Chang R C, Chuang K H, Yen Y T, Wang F G.. Nucleotide sequence of a novel arylesterase gene from Vibriomimicus and characterization of the enzyme expressed in Escherichia coli. Biochem J, 1994, 298: 675–680
[17]Dalrymple B P, Cybinski D H, Layton I, McSweeney C S, Xue G P, Swading Y J, Lowry J B. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology, 1997, 143: 2605–2614
[18]Molgaard A, Kauppinen S, Larsen S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure with Fold and Design, 2000, 8: 373–338
[19]Lo Y C, Lin S C, Shaw J F, Liaw Y C. Crystal structure of the Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol, 2003, 330: 539–551
[20]Reina J J, Guerrero C, Heredia A. Isolation, characterization, and localization of AgaSGNH cDNA: a new SGNH-motif plant hydrolase specic to Agave Americana L. leafe pidermis. J Exp Bot, 2007, 58: 2712–2731
[21]Updegraff E P, Zhao F, Preuss D. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod, 2009, 22: 197–204
[22]Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, Qian Q, Xue Y. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J, 2009, 57: 593–605
[23]Arif S A, Hamilton R G, Yusof F, Chew N P, Loke Y H, Nimkar S, Beintema J J, Yeang H Y. Isolation and characterization of the early nodule-especific protein homologue (Hev b13), an allergenic lipolytic esterase from Hevea brasiliensis latex. J Biol Chem, 2004, 279: 23933–23941
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!