欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1585-1591.doi: 10.3724/SP.J.1006.2011.01585

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米籽粒赖氨酸含量的遗传及其与产量的关系分析

汤继华,季洪强,刘义宝,张君,谭晓军,胡彦民,刘宗华*   

  1. 河南农业大学农学院, 河南郑州 450002
  • 收稿日期:2011-01-24 修回日期:2011-04-27 出版日期:2011-09-12 网络出版日期:2011-06-13
  • 通讯作者: 刘宗华, E-mail: zhliu100@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(30871537), 国家高技术研究发展计划(863计划)项目(2009AA10AA03)和河南省重大公益项目资助。

Inheritance Analysis of Lysine Content in Maize Kernel and Its Relationship with Grain Yield

TANG Ji-Hua,JI Hong-Qiang,LIU Yi-Bao,ZHANG Jun,TAN Xiao-Jun,HU Yan-Min,LIU Zong-Hua*   

  1. College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2011-01-24 Revised:2011-04-27 Published:2011-09-12 Published online:2011-06-13
  • Contact: 刘宗华, E-mail: zhliu100@163.com

摘要: 用5个不同基础群体的15个自选系作母本, 5个不同优势群的测验系作父本, 采用NCII交配设计配成75个杂交组合, 经1年2点田间试验, 用近红外光谱仪测定了亲本及其杂交种F1和F2籽粒的赖氨酸含量, 并用三倍体种子胚乳-细胞质-母体效应模型对赖氨酸含量进行遗传分析。结果表明, 玉米籽粒赖氨酸含量除受种子、母体效应和细胞质3套遗传体系共同控制之外, 还不同程度受环境因素的影响, 遗传主效应方差VG (VG=VA+VD+VC+VAm+VDm)占总遗传方差(VG+VGE)的76.3%, 其中, 种子效应方差(VA+VD)、细胞质效应方差(VC)和母体效应方差(VAm+VDm)分别占24.6%、19.7%和55.7%;赖氨酸含量以母体遗传力为主(h2m=40.98%), 其次为种子遗传力(h2o=17.86%), 而细胞质遗传力较低(h2c=14.29%)。同时发现籽粒赖氨酸含量与产量之间不存在明显相关(r = –0.027)。因此, 在高赖氨酸育种中, 必须重视高值亲本尤其是母本的选择以及不同优势类群间的广泛组配, 从变异广泛的基础材料中对赖氨酸含量和籽粒产量同时进行选择和改良是可能的。

关键词: 玉米, 赖氨酸, 遗传效应, 环境

Abstract: Fifteen inbred lines selected from five basic populations in maize (Zea mays L.) were crossed with five elite inbred lines derived from different heterotic groups according to NCII design, and the 75 combinations were evaluated at two environments in 2009. The lysine content in kernels of parents as well as their hybrids F1 and F2 populations was analyzed using the Near Infrared Reflectance Spectroscopy (NIRS) method. Statistical analysis of lysine contents was made based on the model of triploid seed endosperm, cytoplasm and maternal effect. The results showed that lysine content in kernels was controlled not only by three sets of genetic system, namely seeds, maternal effects and cytoplasm effects, but also affected by environmental factors. The genetic variance of VG (VG=VA+VD+VC+VAm+VDm) accounted for 76.3% of total genetic variance (VG+VGE), of the total genetic variance VG , variances of seed effect (VA+VD), cytoplasm effect (VC) and maternal effect (VAm+VDm) accounted for 24.6%, 19.7%, and 55.7%, respectively. The maternal heritability (h2m=40.98%) of lysine content was the highest, followed by seed heritability (h2o=17.86%), whilethe cytoplasm heritability (h2c=14.29%) was relatively lower. No significant correlation was found between the lysine contents in kernel and grain yield (r = –0.0269). Therefore,much attention should been paidto selecting high-value parental lines, especially female lines, in lysine content and to making diversified crosses among lines from different maize heterotic groups in high-lysine breeding. Based on the results from this study, it seems to be possible to improve lysine content and grain yield simultaneously from materials with extensive variances.

Key words: Maize, Lysine, Inheritance effect, Environment

[1]Dai J-R(戴景瑞), E L-Z(鄂立柱). Scientific and technological innovation of maize breeding in China. J Maize Sci (玉米科学), 2010, 18(1): 1–5 (in Chinese with English abstract)
[2]Zhang L-Y(张丽颖), Wang J-J(王金君), Liu Z-X(刘志新), Zhang X-H(张喜华), Jiang D(江丹), Jiang M(姜敏), Sun N(孙楠), Wang J-N(王娇娜). The development foreground of high lysine corn. Rain Fed Crops (杂粮作物).2004, 24(6): 361–362 (in Chinese)
[3]Hou J-H(侯建华), Zheng H-L(郑红丽), Yang L-J(杨丽君), Zhang J-H(张建华). Correlation analysis between quality characters and agronomical traits in maize germplasm resources. J Inner Mongolia Agric Univ (内蒙古农业大学学报), 2001, 22(2): 71–74 (in Chinese with English abstract)
[4]Lan X-Q(蓝希骞). Genetic and breeding on main yield and quality traits of corn hybrid off springs with high protein and high lysine. Beijing Agric Sci (北京农业科学), 1999, 17(3): 7–10 (in Chinese)
[5]Bhatnagar S, Betran F J, Rooney L W. Combining abilities of quality protein maize inbreds. Crop Sci, 2004, 44: 1997–2005
[6]Kong F-L(孔繁玲), Zhang S-G(张树光), Han L-X (韩立新) , Su S-B(苏胜宝), Hu X-S(胡新生), Zheng C-G(郑长庚). Genetic potential and its utilization of Opaque-2 maize in north China. Sci Agric Sin (中国农业科学), 1991, 24(6): 11–19 (in Chinese with English abstract)
[7]Liu R-D(刘仁东). Comparative study of genetic components for contents of protein, lysine and oil in corn kernel. Acta Agron Sin (作物学报), 1994, 20(1): 93–98 (in Chinese with English abstract)
[8]Letchworth M B, Lambert R J. Pollen parent effects on oil, protein, and starch concentration in maize kernels. Crop Sci, 1998, 38: 363–367
[9]Borra´s L, Cura´ J A, Otegui M E. Maize kernel composition and post flowering source sink ratio. Crop Sci, 2002, 42: 781–790
[10]Goldman I L, Rocheford T R, Dudley J W. Quantitative trait loci influencing protein and starch concentration in the Illinois long term selection maize strains. Theor Appl Genet, 1993, 87: 217–224
[11]Berke T G, Rocheford T R. Quantitative trait loci for flowering, plant and ear height and kernel traits in maize. Crop Sci, 1995, 35: 1542–l549
[12]Li H-C(李浩川), Liu Y-B(刘义宝), Cheng R-X(程荣霞), Sun X-Z(孙希增), Wang Y(王亚), Tang J-H(汤继华), Liu Z-H(刘宗华). Inheritance effect of protein content in maize kernels and its relation to yield. Acta Agron Sin (作物学报), 2009, 35(4): 755–760 (in Chinese with English abstract)
[13]Qi J-S(齐建双), Tie S-G(铁双贵), Sun J-J(孙建军), Lu C-X(卢彩霞), Zhu W-H(朱卫红), Zhou K(周柯). The analysis on determination of lysine in QPM. J Maize Sci (玉米科学), 2008, 16(1): 148–149 (in Chinese with English abstract)
[14]Guo P-Z(郭平仲). Analysis on Quantitative Genetics (数量遗传分析). Beijing: Beijing Normal University Press, 1987. pp 115-124,193 (in Chinese)
[15]Zhu J(朱军). New approaches of genetic analysis for quantitative traits and their applications in breeding. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报?农业与生命科学版), 2000, 26(1): 1–6 (in Chinese with English abstract)
[16]Zhu J, Weir B S. Analysis of cytoplasmic and maternal effects: II. Genetic models for triplod endosperms. Theor Appl Genet, 1994, 89: 160–166
[17]Zhu J (朱军). Analytic methods for Seed models with genotype×environment interactions. Acta Genet Sin (遗传学报), 1996, 23(1): 56–68 (in Chinese with English abstract)
[18]Wei L-M(魏良明), Dai J-R(戴景瑞), Zhang Y-R(张义荣), Liu Z-X(刘占先). Heterosis and gene effects of grain starch content in maize (Zea mays L.). Acta Agron Sin (作物学报), 2005, 31(7): 833–837 (in Chinese with English abstract)
[19]Qi X(祁新), Zhao Y-J(赵颖君), Quan J-B(权继斌), Wu X-K(邬信康). Analysis of combining ability on grain quality characters of maize. J Maize Sci (玉米科学), 2001, 9(1): 26–30 (in Chinese with English abstract)
[20]Cao G-C(曹广才), Huang C-L(黄长玲), Xu Y-C(徐雨昌), Wu D-B(吴东兵), Fan J-Y(范景玉), Gao G-L(高根来). Corn for special use-variety, planting and utilization(特用玉米——品种、种植、利用). Beijing: China Agricultural Science and Technology Press, 2001. pp 30–32 (in Chinese)
[21]Lai L(赖麟), Shi H-C(石海春), Feng H(冯鸿), Ke Y-P(柯永培). Multiple regression and cluster analysis of protein components of maize kernels. Southwest China J Agric Sci (西南农业学报), 2007, 20(4): 597–601 (in Chinese with English abstract)
[22]Wei L-M(魏良明), Dai J-R(戴景瑞), Liu Z-X(刘占先), E L-Z(鄂立柱). Genetic effects of grain protein, starch and oil contents in maize. Sci Agric Sin (中国农业科学), 2008, 41(11): 3845–3850 (in Chinese with English abstract)
[23]Shi H-C(石海春), Ke Y-P(柯永培), Niu Y-Z(牛应泽), Yuan J-C(袁继超), Yu X-J(余学杰), Lai Z-M(赖仲铭), Yang Z-R(杨志荣). Correlation analyses among nutritional quality traits and yield in maize. J Maize Sci (玉米科学), 2006, 14(5): 41–45 (in Chinese with English abstract)
[24]Qi X(祁新), Zhao Y-J(赵颖君), Li P-Z(李鹏志), Wu X-K(邬信康). Analysis of genetic model on quality characters of maize. J Jilin Agric Sci (吉林农业科学), 2001, 22(2): 71–74 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!