欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1597-1604.doi: 10.3724/SP.J.1006.2011.01597

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

热胁迫过程中白菜型油菜种子DNA的甲基化

高桂珍,应菲,陈碧云,李浩,吕晓丹,闫贵欣,许鲲,伍晓明*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学重点开放实验室,湖北武汉 430062
  • 收稿日期:2011-01-20 修回日期:2011-04-27 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 伍晓明, E-mail: wuxm@oilcrops.cn, Tel: 027-86812906
  • 基金资助:

    本研究由农业部作物种质资源保护项目(NB2010-2130135),国家自然科学基金项目(30800693)和中国农业科学院油料作物研究所所长基金项目资助。

Seed DNA Methylation in Response to Heat Stress in Brassica rapa L.

GAO Gui-Zhen,YING Fei,CHEN Bi-Yun,LI Hao,LÜ Xiao-Dan,YAN Gui-Xin,XU Kun,WU Xiao-Ming*   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Oil Crops Biology of Ministry of Agriculture, Wuhan 430062, China
  • Received:2011-01-20 Revised:2011-04-27 Published:2011-09-12 Published online:2011-06-28
  • Contact: 伍晓明, E-mail: wuxm@oilcrops.cn, Tel: 027-86812906

摘要: 过高的环境温度对植物造成热胁迫和热损伤,从而影响植物的生长、发育,以及种子的寿命。以白菜型油菜耐热品种庆元本地油菜和不耐热品种绍兴矮大秆油菜新收获种子为材料,研究了不同温度处理对油菜种子活力以及基因组DNA甲基化水平和状态的影响。结果表明,种子经37℃和4℃处理2 h,发芽率和活力指数与对照差异不显著;经70℃处理2 h后,耐热和不耐热品种种子发芽率和活力指数均明显降低,37℃热诱导后再进行70℃热胁迫处理,发芽率和活力指数均高于直接70℃处理的种子,表明热诱导可以显著提高种子的耐热性。甲基化MSAP分析结果表明,种子热胁迫过程中基因组DNA甲基化水平降低,同时有甲基化和去甲基化现象发生,并以去甲基化现象为主。相关性分析结果显示种子发芽势、发芽率、下胚轴长和活力指数与双链DNA内部发生甲基化的条带数呈负相关,而与双链DNA外部发生甲基化的条带数呈正相关。更为重要的是耐热与不耐热性材料在热胁迫中表现完全相反的甲基化变异模式,耐热品种去甲基化的条带数多于不耐热品种,但甲基化的条带数目则相反,显示DNA甲基化与种子耐热性有重要关系,在热胁迫过程中,种子可能通过DNA甲基化变化调控相关基因的表达来应对高温胁迫。

关键词: 油菜, 热诱导, 热胁迫, DNA甲基化, 活力指数

Abstract: High temperature or heat stress, causes thermal damage to plants, and affects plant growth, development, as well as seed longevity. By using a seed heat tolerant genotype qingyuanbendiyoucai and a seed heat susceptive genotype shaoxingaidaganyoucai, This study aimed at investigation of the effect of different temperature treaments on seed vigor and DNA methylation of these two landraces of Brassica rapa L. The result showed that the seed germination percentage and the vigor index present no significant difference from those of CK under 37°C and 4°C, the seed vigor declined significantly under 70°C of heat stress, and heat acclimation in 37°C for 2 h effectively enhanced seed thermo-tolerance. The results of MSAP analysis showed that the level of global DNA methylation decreased under 70°C of heat stress, both DNA methylation and demethylation were detected, and more DNA demethylation bands were recorded. Seed germinating potential, germination percentage, hypocotyl length, vigor index were significantly negatively correlatied with number of bands of full-methylated (both bands) at the internal cytosine, but positively correlated with the the number of bands of full-methylated (both bands) at the external cytosine. Most importantly, opposite patterns of DNA methylation were discovered in heat tolerant and susceptive seeds under 70°C heat stress, more bands of DNA demethylation were detected in the heat tolerant seeds, but more bands of DNA methylation were detected in the heat susceptive seeds, which suggested that DNA methylation and demethylation play an important role in seed heat tolerance, epigenetic regulation of gene expression by DNA methylation is important for plant to cope with heat stress.

Key words: Brassica rapa L, Heat acclimation, Heat stress, DNA methylation, Vigor index

[1]Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature, 2006, 441: 469–474
[2]Chan S W L, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet, 2005, 6: 351–360
[3]Grant-Downton R T, Dickinson H G. Epigenetic and its implication for plant biology 2. The ‘epigenetic Epiphang’: epigenetics, evolution and beyond. Annal Bot, 2006, 97: 11–27
[4]Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem, 2002, 277: 37741–37746
[5]Li X-L(李雪林), Lin Z-X(林忠旭), Nie Y-C(聂以春), Guo X-P(郭小平), Zhang X-L(张献龙). MSAP analysis of epigenetic changes in cotton (Gossypium hirsutum L.) under salt stress. Acta Agron Sin (作物学报), 2009, 35(4): 588–596 (in Chinese with English abstract)
[6]Zhong L(钟兰), Wang J-B(王建波). The role of DNA hypermethylation in salt resistance of Triticum aestivum L. J Wuhan Bot Res (武汉植物学研究), 2007, 25(1): 102–104 (in Chinese with English abstract)
[7]Choi C S, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics, 2007, 277: 589–600
[8]Hashida S N, Kitamura K, Mikami T, Kishima Y. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiol, 2003, 132: 1207–1216
[9]Labra M, Ghiani A, Citterio S, Sgorbatis S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol, 2002, 4: 694–699
[10]Dyachenko O V, Zakharchenko N S, Shevchuk T V, Bohnert H J, Cushman J C, Buryanov Y L. Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry, 2006, 71: 461–465
[11]Wada Y, Miyamoto K, Kusano T, Sano H. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genom, 2004, 271: 658–666
[12]Gao G-Z(高桂珍), Wu X-M(伍晓明), Lü X-D(吕晓丹), Chen B-Y(陈碧云), Xu K(许鲲), Yan G-X(闫贵欣). Genotype differences of seed viability in rapeseed during storage at different temperature. Chin J Oil Crop Sci (油料作物学报), 2010, 32(4): 495–499(in Chinese with English abstract)
[13]Reyna-Lopez G E, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet, 1997, 253: 703–710
[14]Madlung A, Masuelli R W, Watson B, Reynolds S H, Davison J, Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol, 2002, 29: 733–746
[15]Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methlation-sensitive amplification polymorohism (MSAP). Plant Sci, 2004, 166: 169–178
[16]Sha A H, Lin X H, Huang J B, Zhang D P. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP(MSAP) analysis. Mol Genet Genom, 2005, 273: 484-490
[17]Lu G Y, Wu X M, Chen B Y, Gao G Z, Xu K. Evaluation of genetic and epigenetic modification in rapeseed (Brassica napus) induced by salt stress. J Integr Plant Biol, 2007, 49: 1599–1607
[18]Shaked H, Kashkush K, Ozkan H, Feldman M, Levy A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001, 13: l749–1759
[19]Xiong L Z, Xu C G, Saghai M A, Zhang Q. patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet, 1999, 261: 439–446
[20]Larkindale J, Hall J D, Knight M R, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermo-tolerance. Plant Physiol, 2005, 138: 882–897
[21]Zhou R-G(周人纲), Fan Z-H(樊志和), Li X-Z(李晓芝), Wang Z-W(王占武), Han W(韩炜). The effect of heat acclimation on membrane thermo-stability and relative enzyme activity. Acta Agron Sin (作物学报), 1995, 21(5): 568–572 (in Chinese with English abstract)
[22]Ma X-D(马晓娣), Wang L(王丽), Jiang M(江矛), Peng H-R(彭惠茹). Difference in relative conductivity and ultra structure of leaf between two wheat cultivars with different thermo-tolerance under heat acclimation and heat stress. J China Agric Univ (中国农业大学学报), 2003, 8(3): 4–8 (in Chinese with English abstract)
[23]Long L K, Lin X Y, Zhai J Z, Kou H P, Yang W, Liu B. Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Biochem Biophys Res Commun, 2006, 340: 369–376
[24]Steward N, Kusano T, Sano H. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also wit h altered DNA methylation status in cold-stressed quiescent cells. Nucl Acids Res, 2000, 28: 3250–3259
[25]Pan Y-J(潘雅姣), Fu B-Y(傅彬英), Wang D(王迪), Zhu L-H(朱苓华), Li Z-K(黎志康). Spatial and temporal profiling of DNA methylation induced by drought stress in rice. Sci Agric Sin (中国农业科学), 2009, 42(9): 3009–3018 (in Chinese with English abstract)
[26]ZhaoY-L(赵云雷), Ye W-W(叶武威), Wang J-J(王俊娟), Fan B-X(樊保香). Analysis of DNA cytosine methylation on cotton under salt stress. Cotton Science Society of China, 2008
[27]Hua Y(华扬), Chen X-F(陈学峰), Xiong J-H(熊建华), Zhang Y-P(张义平), Zhu Y-G(朱英国). Isolation and analysis of differentially-methylated fragment CIDM7 in rice induced by cold stress. Hereditas (遗传), 2005, 27(4): 595–600 (in Chinese with English abstract)
[28]Grunau C, Renault E, Rosenthal A, Roizes G. MethDB-a public database for DNA methylation data. Nucl Acid Res, 2001, 29: 270–274
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!