欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1779-1784.doi: 10.3724/SP.J.1006.2011.01771

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个水稻多柱头突变体的形态特征和基因定位

周明镜1,2,文勇2,李双成1,2,李成波2,张曼华2,高烽焱2,王玲霞1,2,李平1,2,*   

  1. 1四川农业大学水稻研究所, 四川温江611130;2四川农业大学 / 作物基因资源与遗传改良教育部重点实验室, 四川雅安625014
  • 收稿日期:2011-01-25 修回日期:2011-06-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 李平, E-mail: liping6575@163.com
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100101)和国家自然科学基金项目(30800084)资助。

Phenotypic Characterization and Genetic Mapping of an Increased Stigma Mutant in Rice (Oryza sativa L.)

ZHOU Ming-Jing1,2,WEN Yong2,LI Shuang-Cheng1,2,LI Cheng-Bo2,ZHANG Man-Hua2,GAO Feng-Yan2,WANG Ling-Xia1,2,LI Ping1,2,*   

  1. 1Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; 2 Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education / Sichuan Agricultural University, Ya’an 625014, China
  • Received:2011-01-25 Revised:2011-06-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 李平, E-mail: liping6575@163.com

摘要: 水稻产量和品质受花器官发育的直接影响, 因此对水稻颖花发育机理的研究将有助于水稻产量和品质的遗传改良。在籼稻C2与2480的杂交后代中发现了一个多柱头突变体, 与野生型相比, 该突变体植株矮化、穗变小、开花延迟和育性降低。颖花解剖发现, 其浆片正常, 柱头和雌蕊数量增加, 雄蕊数目明显减少, 并伴随不同程度的雌雄蕊畸形。以突变体作母本, 构建群体进行遗传分析, 结果显示所有F1均表现正常, F2群体出现3∶1性状分离, 证实该突变性状受1对隐性基因控制。利用微卫星标记进行连锁分析, 将该基因定位于水稻第6染色体上标记RM3183和RM3827之间, 遗传距离分别为2.2 cM和12.0 cM, 且与RM11951、RM19953和RM19961共分离。ISM(t)是一个新的水稻花器官发育控制基因, 本研究为该基因的克隆和功能研究奠定了基础。

关键词: 水稻, 花器官, 突变体, 遗传分析, 基因定位

Abstract: Floral organ development directly affects rice yield and quality. Here we report a rice floral mutant with increased stigmas, which was isolated from the progenies of the combination of C2/2480. Compared with the wild type rice, the mutant showed dwarf plant, small panicle and grain, curled flag leaf, narrow and opening spikelet, as well as later flowering. Most of florets were made up of normal lodicule, increased stigmas, more pistils, and fewer stamens. Segregation of wild type plants to mutant plants in three F2 population were accorded with the ratio of 3:1, which indicated that the mutant is controlled by a single recessive gene. With SSR (Simple Sequence Repeat) markers screening in a total of 92 F2 mutant individuals derived from the cross of ism/T116, the mutant gene was located between the molecular markers RM3183 and RM3827, at the distances of 2.2 cM and 12.0 cM, respectively, on chromosome 6, and co-segregated with RM11951, RM19953 and RM19961. ISM(t) is a new floral-organ identity gene located on chromosome 6 in rice.This result provided a foundation of map-based cloning and function analysis of ISM(t) gene.

Key words: Rice, Floral organ, Mutant, Genetic analysis, Genetic mapping

[1]Liu J(刘坚), Guo L-B(郭龙彪), Qian Q(钱前). Research progress on flower development genes in rice. China Rice (中国稻米),2007, (3): 8–9 (in Chinese with English abstract)
[2]Parkinson C L, Adams K L, Palmer J D. Multigene analyses identify the three earliest lineages of extant flowering plants.Curr Biol, 1999, 9: 1485–1488
[3]Gao J-H(高晶涵), Li Q-Y(李清昀). Molecular mechanism controlling floral organ development in plant. Bull Biol (生物学通报), 2008, 43(2): 19–21 (in Chinese with English abstract)
[4]Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353:31–37
[5]Xu Z-H(许智宏). Plant development and reproduction: advances and prospectives. Acta Bot Sin (植物学报), 1991, 41(9): 909–930(in Chinese with English Abstract)
[6]Theissen G, Saedler H. Floral quartets. Nature, 2001, 409:469–471
[7]Ferrario S, Immink R G H, Shchennikova A, Busscher-Lange J,Angenent G C. The MADS-box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 2003, 15: 914–925
[8]Angenent G C, Franken J, Busscher M, van Dijken A, van Went 1784 作 物 学 报 第 37 卷 L, Dons H, van Tunen A J. A novel class of MADS-box genes is involved in ovule development in petunia. Plant Cell, 1994, 7:1569–1582
[9]Colombo L, Franken J, Koetje E, van Dijken A, van Went L,Dons H, van Tunen A J. The petunia MADS-box gene FBP11 determine ovule identity. Plant Cell, 1995, 7: 1859–1868
[10]Zhang X-Q(张向前), Zou J-S(邹金松), Zhu H-T(朱海涛), Li X-Y(李晓燕), Zeng R-Z(曾瑞珍). Genetic analysis and gene mapping of an early flowering and multi-ovary mutant in rice (Oryza sativa L.). Hereditas (Beijing) (遗传), 2008, 30(10):1349–1355 (in Chinese with English abstract)
[11]Hua Z-M(华志明). Progress of molecular development research in rice. Chin J Rice Sci (中国水稻科学), 2000, 14(4): 256–260(in Chinese with English abstract)
[12]Luo Q(罗琼), Zhu L-H(朱立煌). Progress of molecular floral development research in rice. Hereditas(Beijing) (遗传), 2002,24(1): 87–93 (in Chinese with English abstract)
[13]Li A-H(李爱宏), Wu R(武茹), Zhang Y-F(张亚芳), Tang W(汤雯), Wu C-Y(吴昌银), Pan X-B(潘学彪). Morphogenesis, anatomical observation and primary genetic analysis of a multi-glume floral organ mutant in rice. Chin J Rice Sci (中国水稻科学),2006, 20(4): 348–354 (in Chinese with English abstract)
[14]Li Y-F(李云峰), Luo H-F(罗洪发), Yang Z-L(杨正林), Zhong B-Q(钟秉强), He G-H(何光华). Genetic analysis on pistilliod-stamen mutant in rice. Chin J Rice Sci (中国水稻科学),2004, 18(6): 499–502 (in Chinese with English abstract)
[15]Wang B(王彬), Wu X-J(吴先军), Xie Z-H(谢兆辉). Study on the ABC model for flower development. Agric Biotechnol Sci (农业生物技术学报), 2003, 10(5): 78–82 (in Chinese with English abstract)
[16]Feng M, Fu D Z, Liang H X, Lu A. Floral morphogenesis of Aquilegia L. (Ranunculaceae). Acta Bot Sin, 1995, 37: 791–794
[17]Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 1992, 71: 119–131
[18]Zhu Q H, Ramm K, Shivakkumar R, Dennis E S, Upadhyaya N M. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice.Plant Physiol, 2004, 135: 1514–1525
[19]Park J J, Jin P, Yoon J, Yang J I, Jeong H, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. A mutation in WILTED DWARF and LETHAl 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91–103
[20]Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131:5649–5657
[21]Kalika P, Sriram P, Usha V H. OsMADS1, a rice MADS-box factor,controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J, 2005, 43: 915–928
[22]Lee S Y, Kim J, Han J J, Han M J, An G. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/ AGL20) ortholog in rice. Plant J, 2004, 38: 754–764
[23]Nonomura K I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 2003, 15:1728–1739
[24]Luo H, Lee J Y, Hu Q, Kimberly N V, Timothy K, Eitas, Colin L, Albert P, Kausch, Joel M, Chandlee, Thomas K, Hodges R T S. A rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol, 2003, 62: 397–408
[25]Lee D Y, Lee J, Moon S, Park Soung Y, An G. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J, 2006, 49:64–78
[26]Li N, Zhang D D, Liu H S, Yin C H, Li X X, Liang W Q, Yuan Z,Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H,Zhang D B. The rice TAPETUM DEGENERATION RETARDATION gene is required for tapetum degradation and anther development.Plant Cell, 2006, 18: 2999–3014
[27]Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. Rice UNDEVELOPED TAPETUML is a major regulator of early tapetum development. Plant Cell, 2005,17: 2705–2722
[28]Jang S, Hur J, Kim S J, Han M J, Kim S R, An G. Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Mol Biol, 2004, 56: 133–143
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[14] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[15] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!