作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1771-1778.doi: 10.3724/SP.J.1006.2011.01771
吴慧敏,黄立钰,潘雅娇,靳鹏,傅彬英*
WU Hui-Min,HUANG Li-Yu,PAN Ya-Jiao,JIN Peng,FU Bin-Ying*
摘要: 作为重要的植物转录因子家族, AP2/EREBP转录因子在植物发育、激素、病原反应及非生物胁迫如干旱、高盐、低温应答方面起重要作用。本研究发现水稻AP2/EREBP转录因子家族EREBP亚家族成员OsASIE1 (abiotic stress induced EREBP gene)在水稻受到高盐、干旱胁迫时表达量迅速提高, 并且在水稻中超表达OsASIE1能够改善水稻抵抗盐胁迫的能力。凝胶迁移率实验(electrophoresis mobility shift assay, EMSA)表明该转录因子的AP2结构域能够结合干旱应答顺式作用元件DRE (dehydration-responsive element)和乙烯应答元件GCC box (ethylene response element), 推测OsASIE1可能通过结合DRE和GCC box 作用元件调控下游相关基因的表达, 进而调控相关抗逆反应。
[1]Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149: 88–95 [2]Hussain S S, Kayani M A, Amjad M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog, 2011, 27: 297–306 [3]Sakuma Y, Liu Q, Joseph G. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREB, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophy Res Commun, 2002, 290: 998–1009 [4]Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411–432 [5]Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 2004, 7: 465–471 [6]Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins, that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173–182 [7]Gu Y Q, Wildermuth M C, Chakravarthy S. Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 2002, 14: 817–831 [8]Zhou J M, Tang X Y, Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16: 3207–3218 [9]Hu Y B, Zhao L F, Chong K, Wang T. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. Plant Physiol, 2008, 165: 1717–1725 [10]Xu K N, Xu X, Fukao T, Fukao P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald1 P C, Mackill D J. Sub1A is an ethylene response factor gene that confers submergence tolerance to rice. Nature, 2006, 442: 705–708 [11]Hattori Y, Nagai K, Nagai S. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460: 1026–1031 [12]Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 2009, 150: 1368–1379 [13]Yamaguchi-Shinozakiaib K, Shinozaki K A. Nove1 cis-acting element in an Arabidopsis genes involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell, 1996, 6: 251–264 [14]Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701–713 [15]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035–1040 [16]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781–803 [17]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751–763 [18]Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008, 30 (12): 2191–2198 [19]Zhang M(张梅), Liu W(刘炜), Bi Y-P(毕玉平). Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses. Hereditas (Beijing)(遗传), 2009, 31(3): 236–244 (in Chinese) [20]Sun S, Yu J P, Chen F, Zhao T J, Fang X H, Li Y Q, Sui S F. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. Biol Chem, 2006, 283: 6261–6271 [21]Wei G, Pan Y, Lei J, Zhu Y X. Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. Biochem Mol Biol, 2005, 38: 440–446 [22]Liua Y, Zhao T J, Liu J M, Liue W Q, Liua Q, Yan Y B, Zhou H M. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett, 2006, 580: 1303–1308 [23]Yang S, Yang S C, Liu X, Liu Y, Liu L, Wang X, Hao D Y. Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. FEBS J, 2009, 276: 7177–7186 [24]Jin P(靳鹏), Huang L-Y(黄立钰), Wang D(王迪), Wu H-M(吴慧敏), Zhu L-H(朱苓华), Fu B-Y(傅彬英). Expression profiling of rice AP2/EREBP Genes responsive to abiotic stresses. Sci Agric Sin (中国农业科学), 2009, 42(11): 3765–3773 (in Chinese with English abstract) [25]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425 [26]Chen H(陈惠), Zhao Y(赵原), Chong K(种康). Improved high-efficiency system for rice transformation using mature embryo-derived calli. Chin Bull Bot (植物学通报), 2008, 25(3): 322–331 (in Chinese with English abstract) [27]Liu Qi, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406 [28]Sharoni A M, Nuruzzaman M, Satoh K, Shimizu T, Kondoh1 H, Sasaya T, Choi I R, Omura T, Kikuchi S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol, 2011, 52: 344–360 [29]Qin F, Sakuma Y, Tran L S P, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K I, Tanokura M, Shinozaki K, Yamaguchi-Shinozakia K. Arabidopsis DREB2A interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell, 2008, 20: 1693–1707 [30]Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y , Shinwari Z K, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozak K. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol, 2009, 151: 2046–57 [31]Zhu H-C(朱厚础). Experiment Guide of Protein Purification and Identification (蛋白质纯化与鉴定实验指南). Beijing: Science Press, 1999. pp 158–159 (in Chinese) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|