欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1771-1778.doi: 10.3724/SP.J.1006.2011.01771

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻基因OsASIE1抗逆功能分析

吴慧敏,黄立钰,潘雅娇,靳鹏,傅彬英*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源和遗传改良国家重大科学工程, 北京 100081
  • 收稿日期:2011-03-14 修回日期:2011-06-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 傅彬英, E-mail: fuby@caas.net.cn, Tel: 010-82106698
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2008ZX001-003和2009ZX08009-007B)资助。

Function Analysis of the Gene OsASIE1 Responding to Abiotic Stresses in Rice

WU Hui-Min,HUANG Li-Yu,PAN Ya-Jiao,JIN Peng,FU Bin-Ying*   

  1. Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-03-14 Revised:2011-06-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 傅彬英, E-mail: fuby@caas.net.cn, Tel: 010-82106698

摘要: 作为重要的植物转录因子家族, AP2/EREBP转录因子在植物发育、激素、病原反应及非生物胁迫如干旱、高盐、低温应答方面起重要作用。本研究发现水稻AP2/EREBP转录因子家族EREBP亚家族成员OsASIE1 (abiotic stress induced EREBP gene)在水稻受到高盐、干旱胁迫时表达量迅速提高, 并且在水稻中超表达OsASIE1能够改善水稻抵抗盐胁迫的能力。凝胶迁移率实验(electrophoresis mobility shift assay, EMSA)表明该转录因子的AP2结构域能够结合干旱应答顺式作用元件DRE (dehydration-responsive element)和乙烯应答元件GCC box (ethylene response element), 推测OsASIE1可能通过结合DRE和GCC box 作用元件调控下游相关基因的表达, 进而调控相关抗逆反应。

关键词: 水稻, AP2/EREBP转录因子, EMSA, 耐盐, 超表达

Abstract: AP2/EREBP transcription factors play an important role in plant development, hormone response, biotic and abiotic stress responses. We identified that OsASIE1, a member of EREBP subfamily of AP2/EREBP transcription factor family in rice, was involved in abiotic stress response. Expression of OsASIE1 wasinduced by drought and salt stresses, and over-expression of OsASIE1 in the transgenic rice plant could improve its tolerance to salt stress.Further electrophoresis mobility shift assay (EMSA) revealed that the AP2 domain of OsASIE1 protein could bind both DRE (dehydration-responsive element) and GCC box (ethylene response element, ERE) in vitro. All these results implicated that OsASIE1 might be involved in abiotic stress response by regulating the expression of downstream genes with DRE and GCC box binding.

Key words: Rice, AP2/EREBP transcription factor, EMSA, Salt tolerance, Over-expression

[1]Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149: 88–95
[2]Hussain S S, Kayani M A, Amjad M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog, 2011, 27: 297–306
[3]Sakuma Y, Liu Q, Joseph G. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREB, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophy Res Commun, 2002, 290: 998–1009
[4]Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411–432
[5]Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 2004, 7: 465–471
[6]Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins, that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173–182
[7]Gu Y Q, Wildermuth M C, Chakravarthy S. Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 2002, 14: 817–831
[8]Zhou J M, Tang X Y, Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16: 3207–3218
[9]Hu Y B, Zhao L F, Chong K, Wang T. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. Plant Physiol, 2008, 165: 1717–1725
[10]Xu K N, Xu X, Fukao T, Fukao P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald1 P C, Mackill D J. Sub1A is an ethylene response factor gene that confers submergence tolerance to rice. Nature, 2006, 442: 705–708
[11]Hattori Y, Nagai K, Nagai S. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460: 1026–1031
[12]Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 2009, 150: 1368–1379
[13]Yamaguchi-Shinozakiaib K, Shinozaki K A. Nove1 cis-acting element in an Arabidopsis genes involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell, 1996, 6: 251–264
[14]Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701–713
[15]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035–1040
[16]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781–803
[17]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751–763
[18]Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008, 30 (12): 2191–2198
[19]Zhang M(张梅), Liu W(刘炜), Bi Y-P(毕玉平). Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses. Hereditas (Beijing)(遗传), 2009, 31(3): 236–244 (in Chinese)
[20]Sun S, Yu J P, Chen F, Zhao T J, Fang X H, Li Y Q, Sui S F. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. Biol Chem, 2006, 283: 6261–6271
[21]Wei G, Pan Y, Lei J, Zhu Y X. Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. Biochem Mol Biol, 2005, 38: 440–446
[22]Liua Y, Zhao T J, Liu J M, Liue W Q, Liua Q, Yan Y B, Zhou H M. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett, 2006, 580: 1303–1308
[23]Yang S, Yang S C, Liu X, Liu Y, Liu L, Wang X, Hao D Y. Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. FEBS J, 2009, 276: 7177–7186
[24]Jin P(靳鹏), Huang L-Y(黄立钰), Wang D(王迪), Wu H-M(吴慧敏), Zhu L-H(朱苓华), Fu B-Y(傅彬英). Expression profiling of rice AP2/EREBP Genes responsive to abiotic stresses. Sci Agric Sin (中国农业科学), 2009, 42(11): 3765–3773 (in Chinese with English abstract)
[25]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425
[26]Chen H(陈惠), Zhao Y(赵原), Chong K(种康). Improved high-efficiency system for rice transformation using mature embryo-derived calli. Chin Bull Bot (植物学通报), 2008, 25(3): 322–331 (in Chinese with English abstract)
[27]Liu Qi, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406
[28]Sharoni A M, Nuruzzaman M, Satoh K, Shimizu T, Kondoh1 H, Sasaya T, Choi I R, Omura T, Kikuchi S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol, 2011, 52: 344–360
[29]Qin F, Sakuma Y, Tran L S P, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K I, Tanokura M, Shinozaki K, Yamaguchi-Shinozakia K. Arabidopsis DREB2A interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell, 2008, 20: 1693–1707
[30]Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y , Shinwari Z K, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozak K. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol, 2009, 151: 2046–57
[31]Zhu H-C(朱厚础). Experiment Guide of Protein Purification and Identification (蛋白质纯化与鉴定实验指南). Beijing: Science Press, 1999. pp 158–159 (in Chinese)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!