欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 71-79.doi: 10.3724/SP.J.1006.2012.00071

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

青稞Wx基因多态性与直链淀粉含量的关系

吴昆仑,赵媛,迟德钊*   

  1. 青海省农林科学院/青海省高原作物种质资源创新与利用国家重点实验室培育基地 / 青海省青稞遗传育种重点实验室,青海西宁 810016
  • 收稿日期:2011-03-25 修回日期:2011-09-11 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: 迟德钊, E-mail: qhcdz@163.com, Tel: 0971-5311179
  • 基金资助:

    本研究由现代农业产业技术体系建设专项资金(CARS-05)和引进先进农业科学技术计划(948计划)项目(2010-Z29)资助。

Relationship between Polymorphism at Wx Gene and Amylose Content in Hulless Barley

WU Kun-Lun,ZHAO Yuan,CHI De-Zhao*   

  1. Qinghai Academy of Agricultural and Forestry Sciences / State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm / Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
  • Received:2011-03-25 Revised:2011-09-11 Published:2012-01-12 Published online:2011-11-07
  • Contact: 迟德钊, E-mail: qhcdz@163.com, Tel: 0971-5311179

摘要: 以150份青稞品种为材料, 采用碘–碘化钾染色法进行表型鉴定, 筛选出含糯性基因型的4份参试材料, 分别是品种IG107028、Puebla、互助双槽人和APM-HC1905。经双波长法测定, 150份参试材料的直链淀粉含量(AC)为12.4%~38.5%, 平均26.0%; 4份糯性参试材料的直链淀粉含量为12.4%~18.6%, 平均16.7%。以直链淀粉含量差别较大的51份材料为模板, 利用引物P4进行扩增, 结果P4引物在51份材料中均有扩增产物出现, 且随着参试材料直链淀粉含量的增大, 其扩增产物的分子量有逐渐增大的趋势, Wx基因位点表现出多态性, 二者呈正相关。根据带型将51份材料分成I型、II型、III型和IV型, 其扩增片段分子量分别为457、481、489和491 bp, 各类型品种的直链淀粉含量分别为12%~27%、29%~30%、31%~35%和36%~38%。P4可作为青稞品种选育的辅助选择标记。

关键词: 青稞, Wx基因, 直链淀粉含量, 分子标记

Abstract: Hulless barley (Hordeum vulgare L. var. nudum Hook. f.) is a typical crop in Tibetan Plateau in China. Starch, including amylopectin and amylose, is the main storage component in hulless barley, of which amylose is in low content or even absent in the endosperm of waxy barley. The Waxy gene (Wx) located on the short arm of chromosome 7H is a key gene responsible for amylose synthesis, and also acts as a favorable gene in breeding of hulless barley. However, it is difficult to select hulless barley germplasm with Wx due to lack of effective molecular markers. This study aimed to find out molecular markers applicable in the identification of Wx gene. A total of 150 accessions of hulless barley were primarily tested by staining endosperm with I2-KI, and four accessions (IG107028, Puebla, Huzhushuangcaoren, and APM-HC1905) were found as waxy genotypes. The amylose contents (AC) of the 150 accessions measured using dual-wave length spectrophotometry method varied from 12.4% to 38.5% with an average of 26.0%. The amylose contents of the four waxy genotypes namely IG107028, Brachvtic, Kunlun 2, and Huzhushuangcaoren,were 12.4–18.6% with an average of 16.7%. No genotype was found without amylose. We selected 51 accessions with obvious difference in AC to validate the polymorphism of four pairs of SSR markers. Primers P1 and P3 showed no polymorphism among the 51 accessions, and primer P4 exhibited four types of amplified product, and the fragment size positively correlated with amylose content. The P4 primer was designed according to the sequence of Wx gene on chromosome 7H of barley. Primer P4 can be used as an effective marker in the selection of waxy hulless barley cultivars.

Key words: Hulless barley, Wx gene, Amylose content, Molecular markers

[1]Chao S, Sharp P J, Worland E J. RFLP-based genetic maps of wheat homologous group 7 chromosomes. Theor Appl Genet, 1989, 78: 495–504
[2]Denyer K, Barber L M, Burton R, Hedley C L, Hylton C M, Johnson S. The isolation and characterization of novel low-amylose mutants of Pisum sativum L. Plant Cell & Environ, 1995, 18: 1019–1026
[3]Hylton C M, Denyer K, Keeling P L, Chang M T, Smith A M.The effect of waxy mutation on the granule-bound starch synthases of barley and maize endosperms. Planta, 1996, 198: 230–237
[4]Shure M,Wessler S, Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell, 1983, 35: 225–233
[5]Clark J R, Robertson M, Ainsworth C C. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Plant Mol Biol, 1991, 16: 1099–1101
[6]Bao J S, Corke H, Sun M. Microsatallites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor Appl Genet, 2002, 105: 898–905
[7]Kramer H H, Blander B A. Orientating linkage maps on the chromosomes of barley. Crop Sci, 1961, 1: 339–342
[8]Tabata M. Studies of a gametophyte factor in barley. Jpn J Genet, 1961, 36: 157–167
[9]Kleinhofs A. Integrating barley RFLP and classical marker maps. Barley Genet Newsl, 1997, 27: 105–112
[10]Nakao S. On waxy barleys in Japan. Seiken Jiho, 1950, 4: 111–113
[11]Ono T, Suzuki H. Endosperm characters in hybrids between barley varieties with starchy and waxy endosperms. Seiken Jiho, 1957, 8: 11–19
[12]Rosichan J, Nilan R A, Arenaz P, Kleinhofs A. Intragenic recombination at the waxy locus in Hordeum vulgare. Barley Genet Newsl, 1979, 9: 79–85
[13]Domon E, Saito A, Takeda K. Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst, 2002, 77: 351–359
[14]Sun Y-Y(孙业盈), Lü Y(吕彦), Dong C-L(董春林), Wang P-R(王平荣), Huang X-Q(黄晓群), Deng X-J(邓晓建). Progress in regulation of rice Wx gene expression. Hereditas (遗传), 2005, 27(6): 79–85 (in Chinese with English abstract)
[15]Bollieh C N, Webb B D. Inheritance of amylose in two hybrid populations of rice. Cereal Chem, 1973, 50: 631–636
[16]Domon E, Yanagisawa T, Saitol A, Takeda K. Single nucleotide polymorphism genotyping of the barley waxy gene by polymerase chain reaction with confronting two-pair primers. Plant Breed, 2004, 123: 225–228
[17]Sharp P J, Chao S, Desai S, Gale M D.The isolation, characterization and application in Triticeae of a set of wheat RFLP probe identifying each homoeologous chromosome arm. Theor Appl Genet, 1989, 78: 342–348
[18]Zhu C-M(朱彩梅), Zhang J(张京). Genetic diversity analysis of Waxy barley in China based on SSR markers. J Plant Genet Resour (植物遗传资源学报), 2010, 11(1): 564–572 (in Chinese with English abstract)
[19]Nakamura T, Yamamori M, Hirano H, Hidaka S. Identification of three Wx proteins in wheat (Triticum aestivum L). Biochem Genet, 1993, 111: 75–86
[20]Vrinten P, Nakamura T, Yamamori M. Molecular characterization of waxy mutations in wheat. Mol Gen Genet, 1999, 261: 463–471
[21]Wang H-P(王海萍), Tang C-H(唐朝辉), Liu S-X(刘少翔), Zhang L-P(张兰萍), Lu C-F(逯成芳). Analysis of waxy proteins in Shanxi winter wheat cultivars using SDS-PAGE and molecular markers. Acta Agric Boreali-Sin (华北农学报), 2007, 22(1): 98–102 (in Chinese with English abstract)
[22]Juliano B O, Pascual C G. Quality characteristics of milled rice grown in different countries. IRRI Res Paper Series, 1980, 48: 1–5
[23]McKenzie K S, Rutger J N. Genetic analysis of amylose content alkali spreading score and grain dimensions in rice. Crop Sci, 1983, 23: 306–313
[24]Briney A, Wilson R, Potter R H, Barclay I, Crosbie G, Appels R, Jones M G K. A PCR-based marker for selection of starch and potential noodle quality in wheat. Mol Breed, 1998, 4: 427–433
[25]Wang F(王芳), Zhao H(赵辉), Wang Y(王燕), Wang X-Z(王宪泽). Relationship between fragment length polymorphism with waxy and amylase content in wheat. J Plant Physiol Mol Biol (植物生理与分子生物学报), 2005, 31(3): 269–274 (in Chinese with English abstract)
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[3] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[6] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[7] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[8] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[9] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[10] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[11] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[12] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[13] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[14] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[15] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!