欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (03): 429-435.doi: 10.3724/SP.J.1006.2012.00429

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻短根相关基因OsKSR2的定位

罗丽丽,史俊颖,项显波,丁沃娜*,朱世华   

  1. 宁波大学植物分子生物学研究室,浙江宁波315211
  • 收稿日期:2011-07-11 修回日期:2011-10-15 出版日期:2012-03-12 网络出版日期:2012-01-04
  • 通讯作者: 丁沃娜, E-mail: dwn@zju.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31071388)和宁波市自然科学基金项目(2006A610074)资助。

Mapping of a Short Root-Related Gene OsKSR2 in Rice (Oryza sativa L.)

LUO Li-Li,SHI Jun-Ying,XIANG Xian-Bo,DING Wo-Na*,ZHU Shi-Hua   

  1. Laboratory of Plant Molecular Biology, Ningbo University, Ningbo 315211, China
  • Received:2011-07-11 Revised:2011-10-15 Published:2012-03-12 Published online:2012-01-04
  • Contact: 丁沃娜, E-mail: dwn@zju.edu.cn

摘要: 根系是将植物固定于土壤及吸收利用水分和养分的重要器官。本研究从甲基磺酸乙酯(ethyl methane sulfonate,EMS)诱变的籼稻Kasalath突变体库中,筛选到一个水稻根系发育缺陷的突变体,命名为Osksr2 (Oryza sativa kasalath short root 2),该突变体植株整体矮小,主根、不定根和侧根的伸长都受到抑制。遗传分析表明该突变性状由1对隐性核基因控制,将该基因命名为OsKSR2。将Osksr2纯合体与粳稻日本晴杂交构建F2群体,利用已经公布的水稻SSR标记和自行设计的STS标记进行基因定位,将OsKSR2定位在水稻第8染色体STS标记S27887与S27988之间约101 kb的范围内。通过水稻基因组注释系统共预测到17个开放阅读框(ORF),没有已知的与根系发育相关的基因。对OsKSR2的定位将为进一步克隆该基因和阐明水稻根系伸长的分子机理奠定基础。

关键词: 水稻, 短根突变体, 基因定位, 遗传分析

Abstract: Theroot system of plant plays an important role in supporting plants and uptaking nutrients and water in soil. In this study, a rice mutant with significantly short roots was isolated from an EMS (ethyl methane sulfonate)-generated mutant library of Kasalath and named as Osksr2(Oryza sativa kasalath short root 2). Osksr2 showed a dwarf phenotype and the elongation of primary roots, adventitious roots and lateral roots in the mutant was severely impaired. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive nuclear gene, and named as OsKSR2. To map OsKSR2, we generated an F2 population by crossing Osksr2 with Nipponbare wild type. By using the published SSR markers and newly designed STS markers, OsKSR2 was mapped to a 101 kb region between the markers S27887 and S27988 on chr.8. Within this region there were seventeen predicted genes, and none of them had been reported to be involved in root development. The study will be helpful for the cloning of OsKSR2 and characterization of the molecular mechanism of root elongation in rice.

Key words: Rice (Oryza sativa L.), Short root mutant, Gene mapping, Genetic analysis

[1]Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T. A root-shoot interaction hypothesis for high productivity of field crops. Soil Sci Plant Nutr, 1997, 43: 1079–1084

[2]Lynch J. Root architecture and plant productivity. Plant Physiol, 1995, 109: 7–13

[3]Teo Y H, Beyrouty C A, Norman R J, Gbur E E. Nutrient uptake relationship to root characteristics of rice. Plant Soil, 1995, 171: 297–302

[4]Terashima K, Ogata T, Akita S. Eco-physiological characteristics related with lodging tolerance of rice in direct sowing cultivation. Jpn J Crop Sci, 1994, 63: 34–41

[5]Nemoto H, Suga R, Ishihara M, Okutsu Y. Deep rooted rice varieties detected through the observation of root characteristics using the trench method. Breed Sci, 1998, 48: 321–324

[6]Azhiri-Sigari T, Yamauchi A, Kamoshita A, Wade L J. Genotypic variation in response of rainfed lowland rice to draught and rewatering. Plant Prod Sci, 2000, 3: 180–188

[7]Kang S Y, Morita S, Yamazaki K. Root growth and distribution in some japonica-indica hybrid and japonica type rice cultivars under field conditions. Jpn J Crop Sci, 1994, 63: 118–124

[8]Morita S, Suga T, Yamazaki K. The relationship between root length density and yield in rice plants. Jpn J Crop Sci, 1988, 57: 438–443

[9]Cheng J C, Seeley K A, Sung Z R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol, 1995, 107: 365–376.

[10]Vernoux T, Wilson R C, Seeley K A, Reichheld J P, Muroy S, Brown S, Maughan S C, Cobbett C S, Montagu M V, Lnze D, May M J, Sung Z R. The root meristemless1/cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell, 2000, 12: 97–109

[11]Baskin T I, Betzner A S, Hoggart R, Cork A, Williamson R E. Root morphology mutants in Arabidopsis thaliana. Aust J Plant Physiol, 1992, 19: 427–437

[12]Baskin T I, Cork A, Williamson R E, Gorst J R. STUNTED PLANT 1, a gene required for expansion in rapidly elongating but not in dividing cells and mediating root growth responses to applied cytokinin. Plant Physiol, 1995, 107: 233–243

[13]Benfey P N, Linstead P J, Robert K, Schiefelbein J W, Hauser M T. Aeschbacher R A. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development, 1993, 119: 57–70

[14]Mo X R, Zhu Q Y, Li X, Li J, Zeng Q N, Rong H L, Zhang H M, Wu P. The hpa1 mutant of Arabidopsis reveals a crucial role of Histidine homeostasis in root meristem maintenance. Plant Physiol, 2006, 141: 1425–1435

[15]Zhu Y, Dong A, Meyer D, Pichon O, Renou J P, Cao K, Shen W H. Arabidopsis NRP1 and NRP2 encode Histone chaperones and are required for maintaining postembryonic root growth. Plant Cell, 2006, 18: 2879–2892

[16]Cano-Delgado A, Metzlaff K, Bevan M W. The elil mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development, 2000, 127: 3395–3405

[17]Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mccann M, Rayon C, Vernhettes S, Hofte H. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell, 2000, 12: 2409–2424

[18]Jiang H W, Wang S M, Dang L, Wang S F, Chen H M, Wu Y R, Jiang X H, Wu P. A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice. Plant Physiol, 2005, 138: 232–242

[19]Li J, Zhu S H, Song X W, Shen Y, Chen H M, Yu J, Yi K K, Liu Y F, Karplus V J, Wu P, Deng X W. A rice Glutamate receptor–like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell, 2006 18: 340–349

[20]Jia L Q, Zhang B T, Mao C Z, Li J H, Wu Y R, Wu P, Wu Z C. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta, 2008, 228: 51–59

[21]Jia L Q, Wu Z C, Hao X, Carrie C, Zheng L B, Whelan J, Wu Y R, Wang S F, Wu P, Mao C Z. Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa. New Phytologist, 2011, 189: 843–855

[22]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 3rd edn. Manila: International Rice Research Institute, 1976. pp 62

[23]Zhang X-Q(张向前), Zou J-S(邹金松), Zhu H-T(朱海涛), Li X-Y(李晓燕), Zeng R-Z(曾瑞珍). Genetic analysis and gene mapping of an early flowering and multi-ovary mutant in rice (Oryza sativa L.). Hereditas (遗传), 2008, 30(10): 1349–1355 (in Chinese with English abstract)

[24]Michelmore R W, Papan I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832

[25]Yao S G, Taketa S, Ichii M. A novel short-root gene that affects speci?cally early root in rice (Oryza sativa L.). Plant Sci, 2002, 163: 207–215

[26]Ning Y-Q(宁永强), Ding W-N(丁沃娜), Zhu S-H(朱世华), Yu H-W(余红卫), Yu H(於宏), Lu K-X(陆开行). Genetic analysis and gene mapping of a short root mutant ksr1 in rice. Chin J Rice Sci (中国水稻科学), 2010, 24(6): 652–654 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!