欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 606-613.doi: 10.3724/SP.J.1006.2012.00606

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通菜豆镰孢菌枯萎病抗病相关基因PvCaM1的克隆及表达分析

薛仁风,朱振东,王晓鸣,王兰芬,武小菲,王述民*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京 100081
  • 收稿日期:2011-09-22 修回日期:2011-12-19 出版日期:2012-04-12 网络出版日期:2012-02-13
  • 通讯作者: 王述民, E-mail: smwang@mail.caas.net.cn, Tel: 010-82108567
  • 基金资助:

    本研究由现代农业产业技术体系专项(CARS-09)资助。

Cloning and Expression Analysis of Fusarium Wilt Resistance-related Gene PvCaM1 in Common Bean (Phaseolus vulgaris L.)

XUE Ren-Feng,ZHU Zhen-Dong,WANG Xiao-Ming,WANG Lan-Fen,WU Xiao-Fei,WANG Shu-Min*   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081 China
  • Received:2011-09-22 Revised:2011-12-19 Published:2012-04-12 Published online:2012-02-13
  • Contact: 王述民, E-mail: smwang@mail.caas.net.cn, Tel: 010-82108567

摘要: 钙调素蛋白(calmodulin,CaM)作为植物细胞内介导多种功能的Ca2+结合蛋白,在调节植物的生长发育和抗病性方面具有重要作用。利用普通菜豆(Phaseolus vulgaris L.)表达序列标签(EST)克隆了含有编码普通菜豆CaM基因的cDNA序列。序列分析表明,cDNA片段长713 bp,命名为PvCaM1,具有一个453 bp的开放阅读框(ORF),GenBank登录号为JN418801,该基因编码150个氨基酸,预测蛋白质分子质量为17.16 kD。蛋白质结构分析表明,PvCaM1蛋白含有4个Ca2+结合结构域(EF-hand)。同源分析结果显示,PvCaM1基因与百脉根、西瓜的CaM基因亲缘关系最近,分别达到77%和76%。荧光定量PCR分析表明,PvCaM1基因受尖孢镰孢菌菜豆专化型FOP-DM01菌株诱导表达,接种病原菌96 h,抗病品种260205根中PvCaM1基因的表达量达到最高,而感病品种BRB-130达到最低,260205叶中PvCaM1基因的表达量均高于BRB-130,而且叶中的表达量高于根和茎中的表达量。PvCaM1基因表达量也受外源植物激素脱落酸、茉莉酸甲酯和乙烯利诱导上调,在根、茎、叶中均有不同程度的表达。本研究表明PvCaM1基因可能通过脱落酸、茉莉酸和乙烯等信号途径参与菜豆对FOP-DM01菌株的防御反应,推测菜豆PvCaM1基因与镰孢菌枯萎病的抗病性有一定关联。

关键词: 普通菜豆, 镰孢菌枯萎病, PvCaM1基因, 基因表达分析

Abstract: Calmodulin (CaM) is a multifunctional Ca2+-binding protein in plant cells. It plays important roles in regulating the growth, development and disease resistance in plants. A full-length cDNA sequence coding for CaM in common bean was cloned based on expressed sequence tags from common bean. Sequence analysis showed that the isolated fragment was 713 bp, it contained an open reading frame (ORF) of 453 bp encoding 150 amino acids with a theoretical molecular weight of 17.16 kD, designated PvCaM1 (GenBank accession number JN418801),. Online ScanProsite tool analysis showed that PvCaM1 had four Ca2+-binding domains with the function of combining with free Ca2+. Homology analysis indicated that PvCaM1 gene was similar to CaM genes in other plant species including Lotus japonicus (CAB63264.3), watermelon (BAI52955.1), Populus (ADC80735.1) and castor bean (XP_002533357.1).Phylogenetic analysis based on the amino acids sequence of PvCaM1 with other nine species showed that the protein encoded by this gene had the closest relationship with the CaM in Lotus japonicus and watermelon, the homology were 77% and 76%, respectively. Real time-PCR analysis indicated that the expression level of PvCaM1 in the interactions between the resistant cultivars and Fusarium wilt pathogen FOP-DM01 (Fusarium oxysporum f. sp. phaseoli) increased significantly and reached the peak at 96 h, however, the susceptible one touched the bottom under the same conditions.The expression level of PvCaM1 in 260205 leaves was higher than that in BRB-130 at all different time points. PvCaM1 expressed differently in the leaves, stems and roots, the expression level in leaves was higher than that in roots and stems. Transcriptional level of PvCaM1 was up-regulated by exogenous abscisic acid, methyl jasmonate and ethephon, but not increased significantly by salicylic acid and 3-indoleacetic acid. These results suggested that PvCaM1 is probably involved in the abscisic acid, jasmonic acid and ethylene-regulated resistant response pathways, but not closely related to the salicylic acid and 3-indoleacetic acid pathway. The study indicated that the function of PvCaM1 should be closely related to the resistant response pathways against Fusarium wilt pathogen FOP-DM01 with involvement of abscisic acid, jasmonic acid and ethylene in common bean.

Key words: Common bean, Fusarium wilt, PvCaM1 gene, Expression analysis

[1]Buruchara R A, Camacho L. Common bean reaction to Fusarium oxysporum f. sp. phaseoli, the cause of severe vascular wilt in Central Africa. J Phytopathol, 2000, 148(1): 39–45

[2]Pastor C, Abawi G S. Reactions of selected bean germplasm to infection by Fusarium oxysporum f. sp. phaseoli. Plant Dis, 1987, 71: 990–993

[3]Salgado M O, Schwartz H F, Brick M A. Inheritance of resistance to a Colorado race of Fusarium oxysporum f. sp. phaseoli in common beans. Plant Dis, 1995, 79: 279–281

[4]Miklas P N, Kelly J D, Beebe S E, Blair M W. Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica, 2006, 147: 105–131

[5]Zielinski R E. Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Biol, 1998, 49: 697–725

[6]Yang T, Segal G, Abbo S, Feldman M, Fromm H. Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol Gen Genet, 1996, 252: 684–694

[7]Snedden W A, Fromm H. Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci, 1998, 3: 299–304

[8]Barnett M J, Long S R. Nucleotide sequence of an alfalfa calmodulin cDNA. Nucl Acids Res, 1990, 18: 3395

[9]Chandra A, Thungapathra M, Upadhyaya K C. Molecular cloning and characterization of a calmodulin gene from Arabidopsis thaliana. J Plant Biochem Biotachnol, 1994, 3: 31–35

[10]Chye M L, Liu C M, Tan C T. A cDNA clone encoding Brassica calmodulin. Plant Mol Biol. 1995, 27: 419–423

[11]Duval F D, Renard M, Jaquinod M, Biou V, Montrichard F, Macherel D. Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds. Plant J, 2002, 32: 481–493

[12]Lee S H, Kim J C, Lee M S, Heo, W D, Seo H Y, Yoon H W, Hong J C, Lee S Y, Bahk J D, Hwang I. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem, 1995, 270: 21806–21812

[13]Ling V, Assmann S M. Cellular distribution of calmodulin and calmodulin-binding proteins in Vicia faba L. Plant Physiol. 1992, 100: 970–978

[14]Nath M, Goel A, Taj G, Kumar A. Molecular cloning and comparative in silico analysis of calmodulin genes from cereals and millets for understanding the mechanism of differential calcium accumulation. J Prot Bioinform, 2010, 3: 294–301

[15]Takezawa D, Liu Z H, An G, Poovaiah B W. Calmodulin gene family in potato: developmental and touch-induced expression of the mRNA encoding a novel isoform. Plant Mol Biol, 1995, 27: 693–703

[16]Watillon B, Kettmann R, Boxus P, Burny A. Cloning and characterization of an apple (Malus domestica L. Borkh) calmodulin gene. Plant Sci, 1992, 82: 201–212

[17]Wang Y-H(王艳辉), Jia H(贾慧), Si H-L(司贺龙), Ma J-F(马继芳), Hao H-F(郝会芳), Dong J-G(董金皋). Change of calmodulin in corn leaf cell with different resistant genes under stress of HT-toxin from Exserohilum turcicum. J Hebei Agric Univ (河北农业大学学报), 2007, 30: 4–7 (in Chinese with English abstract)

[18]Hong Bo S, Li Ye C, Ming A S. Calcium as a versatile plant signal transducer under soil water stress. Bioessays, 2008, 30: 634–641

[19]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273

[20]Kidd B N, Kadoo N Y, Dombrecht B, Tekeo Lu M, Gardiner D M, Thatcher L F, Aitken E A B, Schenk P, Manners J, Kazan K. Auxin signaling and transport promote susceptibility to the root infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol Plant Microbe Interact, 2011, 24: 733–748

[21]Leon-Reyes A, Du Y, Koornneef A, Proietti S, Körbes A P, Memelink J, Pieterse C M J, Ritsema T. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol Plant Microbe Interact, 2010, 23(2): 187–197

[22]Kim M C, Chung W S, Yun D J, Cho M J. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant, 2009, 2(1): 13–21

[23]Wang Q, Chen B, Liu P, Zheng M, Wang Y, Cui S, Sun D, Fang X, Liu C M, Lucas W J. Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem, 2009, 284: 12000–12007

[24]Heo W D, Lee S H, Kim M C, Kim J C, Chung W S, Chun H J, Lee K J, Park C Y, Park H C, Choi J Y. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA, 1999, 96: 766–771

[25]Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y. Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur J Biochem, 2001, 268: 3916–3929

[26]Huo J-F(霍建飞), Song S-S(宋水山), Li X(李星), Yang W-X(杨文香), Liu D-Q(刘大群). Research on CaM and its isform genes involved in the resistance response of wheat to Puccinia triticina. Acta Agron Boreali-Sin (华北农学报), 2010, 25(4): 175–179 (in Chinese with English abstract)

[27]Liu X-Y(刘新颖), Wang X-J(王晓杰), Xue J(薛杰), Xia N(夏宁), Deng L(邓麟), Cai G-L(蔡高磊), Tang C-L(汤春蕾), Wei G-R(魏国荣), Huang L-L(黄丽丽), Kang Z-S(康振生). Cloning and expression analysis of a novel calmodulin isoform TaCaM5 from wheat. Acta Agron Sin (作物学报), 2010, 36(6): 953–960 (in Chinese with English abstract)

[28]Herman R, Zvirin Z, Kovalski I, Freeman S, Denisov Y, Zuri G, Katzir N, Perl-Treves R, Pitrat M. Characterization of Fusarium race 1, 2 resistance in melon and mapping of a major QTL for this trait near a fruit netting locus. In: Pitrat M ed. The IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. Avignon (France): INRA. Centre de Recherche d'Avignon. Unité Génétique et Amélioration des Fruits et Légumes, Montfavet, 2008. pp 149–156

[29]Berrocal-Lobo M, Molina A. Arabidopsis defense response against Fusarium oxysporum. Trends Plant Sci, 2008, 13: 145–150

[30]Kazan K, Manners J M. Jasmonate signaling: toward an integrated view. Plant Physiol, 2008, 146: 1459–1468

[31]Koornneef A, Pieterse C M J. Cross talk in defense signaling. Plant Physiol, 2008, 146: 839–844

[32]Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol, 2005, 8: 532–540

[33]Yang T, Lev-Yadun S, Feldman M, Fromm H. Developmentally regulated organ-, tissue-, and cell-specific expression of calmodulin genes in common wheat. Plant Mol Biol, 1998, 37(1): 109–120

[34]Yue H-L(岳海林), Deng X-X(邓秀新), Peng S-A(彭抒昂). Expression of calmodulin mRNAs in ovaries and fruitlets of pear. Sci Agric Sin (中国农业科学), 2008, 41(1): 176–181 (in Chinese with English abstract)
[1] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[2] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[3] 薛仁风, 王利, 丰明, 葛维德. 普通菜豆中烟草水杨酸结合蛋白2同源基因的鉴定及表达特征分析[J]. 作物学报, 2018, 44(05): 642-649.
[4] 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368.
[5] 耿庆河,王兰芬,武晶,王述民. 普通菜豆籽粒大小与形状的QTL定位[J]. 作物学报, 2017, 43(08): 1149-1160.
[6] 朱吉风,武晶,王兰芬,朱振东,王述民*. 菜豆普通细菌性疫病抗性基因定位[J]. 作物学报, 2017, 43(01): 1-8.
[7] 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 .
[8] 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆品种苗期抗旱性鉴定[J]. 作物学报, 2015, 41(06): 963-971.
[9] 陈明丽,王兰芬,武晶,张晓艳,杨广东,王述民1. 普通菜豆基因组SSR标记开发及在豇豆和小豆中的通用性分析[J]. 作物学报, 2014, 40(05): 924-933.
[10] 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆抗旱生理特性[J]. 作物学报, 2014, 40(04): 702-710.
[11] 郭涛,黄永相,罗文龙,黄宣,王慧,陈志强,刘永柱. 水稻叶色白化转绿及多分蘖矮秆突变体hfa-1的基因表达谱分析[J]. 作物学报, 2013, 39(12): 2123-2134.
[12] 杨在东,马信,吴世文,王宏伟,孙鑫,冀宪领,李安飞,孔令让. 小麦NPR1-like基因的克隆及赤霉菌诱导下的表达分析[J]. 作物学报, 2013, 39(10): 1775-1782.
[13] 薛仁风,朱振东,黄燕,王晓鸣,王兰芬,王述民. 应用荧光定量PCR 技术分析普通菜豆品种中尖镰孢菜豆专化型定殖量[J]. 作物学报, 2012, 38(05): 791-799.
[14] 王坤;王晓鸣;朱振东;赵晓彦;张晓艳;王述民. 以SSR标记对普通菜豆抗炭疽病基因定位[J]. 作物学报, 2009, 35(3): 432-437.
[15] 杨鸯鸯;李云;丁勇;徐雷;张成桂;刘英;甘莉. 甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达[J]. 作物学报, 2009, 35(1): 71-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!