欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2123-2134.doi: 10.3724/SP.J.1006.2013.02123

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻叶色白化转绿及多分蘖矮秆突变体hfa-1的基因表达谱分析

郭涛**,黄永相**,罗文龙,黄宣,王慧,陈志强*,刘永柱*   

  1. 华南农业大学 / 国家植物航天育种工程技术研究中心, 广东广州510642
  • 收稿日期:2013-03-26 修回日期:2013-06-20 出版日期:2013-12-12 网络出版日期:2013-09-29
  • 通讯作者: 刘永柱, E-mail: lively@scau.edu.cn; 陈志强, E-mail: chenlin@scau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31200250),国家高技术研究发展计划(863计划)项目(2012AA101201)和广东省自然科学基金项目(S2011010001892)资助。

Gene Differential Expression of a Green-revertible Albino and High-tillering Dwarf Mutant hfa-1 by Using Rice Microarray

GUO Tao**,HUANG Yong-Xiang**,LUO Wen-Long,HUANG Xuan,WANG Hui,CHEN Zhi-Qiang*,LIU Yong-Zhu*   

  1. South China Agricultural University, National Engineering Research Center of Plant Space Breeding, Guangzhou 510642, China?
  • Received:2013-03-26 Revised:2013-06-20 Published:2013-12-12 Published online:2013-09-29
  • Contact: 刘永柱, E-mail: lively@scau.edu.cn; 陈志强, E-mail: chenlin@scau.edu.cn

摘要:

hfa-1的白化转绿、多分蘖矮秆表型受单隐性核基因hw-1(t)控制。该基因编码含线粒体交替氧化酶AOX结构的叶绿体蛋白,通过参与叶绿体呼吸电子传递链,对类胡萝卜素生物合成途经及其次生代谢途径进行调控。本研究对hfa-1突变体叶色白化转绿过程中的类胡萝卜素生物合成途径、与该途径有关的植物激素代谢途径的相关基因进行表达分析,并分析了hfa-1突变体在白化、转绿两个时期的基因表达谱。结果表明,类胡萝卜素、植物激素(GAABASL)生物合成相关基因在hfa-1突变体白化期叶片中表达量减低,暗示hw-1(t)基因的突变抑制了苗期类胡萝卜素合成,同时还对涉及该过程相关多个次生代谢途径产生影响。通过基因表达谱芯片和功能分类分析,发现hfa-1叶色白化转绿过程中上调和下调表达基因涉及的生理过程主要在光合作用、应对内源刺激物和胁迫响应等方面;其中电子传递体Cytb6/f复合蛋白合成相关基因上调表达明显,推测Cytb6/f蛋白复合体在电子传递和质醌库还原氧化上对hw-1(t)起一定的补偿功能。

关键词: 水稻, 白化转绿, 突变体hfa-1, 基因表达分析

Abstract:

Phenotype of the hfa-1 mutant characterized by green-revertible albino and high-tillering dwarf is controlled by a single recessive nuclear gene hw-1(t), which encodes a chloroplast protein containing the mitochondrial alternative oxidase (AOX) structure and involves in the electron transport chain of chloroplast respiratory regulating biosynthesis of carotenoid and carotenoid-related secondary metabolic pathways. In this study, expression analysis of genes involved in carotenoid biosynthesis and carotenoid-related plant hormones biosynthesis andgene-expression profiling were conducted before and after the turning-green of hfa-1 mutant. the results displayed that expression levels of genes involved in carotenoid biosynthesis and carotenoid-related plant hormones (GA, ABA and SL) biosynthesis were decreased in the albino leaves of hfa-1, suggesting that mutation of hw-1(t) inhibits the biosynthesis of carotenoid and has an impact on carotenoid-related secondary metabolic pathways. Gene expression profiling and functional classification showed that genes related to physiological processes in response to photoeynthesis, endogenous stimulus and stress were differently expressed in hfa-1 before and after its turning-green. Expression of genes encoding proteins related to the electron transport complex Cytb6/f were up-regulated significantly, indicating that Cytb6/f would provide some compensation in electron transport and redox of plastoquinone in the hfa-1 mutant.

Key words: Rice (Oryza sativa L.), Green-revertible albino, hfa-1 mutant, Gene expression analysis

[1]Wu Z, Zhang X, He B, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophylide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40



[2]Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z, Chu C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J, 2008, 54: 177–189



[3]Guo T(郭涛), Huang X(黄宣), Huang Y-X(黄永相), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强), Wang H(王慧). Characterizations of a mutant gene hw-1(t) for green-revertible albino, high tillering and dwarf in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2012, 38(1): 23–35 (in Chinese with English abstract)



[4]Guo T(郭涛), Huang Y-X(黄永相), Huang X(黄宣), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强), Wang H(王慧). Map-based cloning of a green-revertible albino and high-tillering dwarf gent hw-1(t) in rice. Acta Agron Sin (作物学报), 2012, 38(8): 1397–1406 (in Chinese with English abstract)



[5]Carol P, Stevenson D, Bisanz, C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene immutans cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57–68



[6]Wu D, Wright D A, Wetzel C, Voytas D F, Rodermel S. The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell, 1999, 11: 43–55



[7]Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 521–547



[8]Beveridge C A, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol, 2010, 13: 34–39



[9]Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol, 2011, 12: 211–221



[10]Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci, 2005, 168: 1309–1318



[11]Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H. The cellular biology of proton-motive force generation by V-ATPases. J Exp Biol, 2000, 203: 89–95



[12]Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S. Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ, 2007, 30: 350–365



[13]Rédei G P. Somatic instability caused by a cysteine-sensitive gene in Arabidopsis. Science, 1963, 139: 767–769



[14]Chung S C, Rédei G P. An anomaly of the genetic regulation of the de novo pyrimidine pathway in the plant Arabidopsis. Biochem Genet, 1974, 11: 11441–11453



[15]Wetzel C M, Jiang C Z, Meehan L J, Voytas D F, Rodermel S R. Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J, 1994, 6: 161–175



[16]Carol P, Stevenson D, Bisanz, C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene immutans cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57–68



[17]Wu D, Wright D A, Wetzel C, Voytas D F, Rodermel S. The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell, 1999, 11: 43–55



[18]Lennon A M, Prommeenate P, Nixon P J. Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and IMMUTANS, in higher-plant plastids. Planta, 2003, 218: 254–260



[19]Josse E M, Simkin A J, Gaffé J, Labouré A M, Kuntz M, Carol P. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol, 2000, 123: 1427–1436



[20]Barr J, White W S, Chen L, Bae H, Rodermel S. The GHOST terminal oxidase regulates developmental programming in tomato fruit. Plant Cell Environ, 2004, 27: 840–852



[21]Eisenreich W, Bacher A, Arigoni D, Rohdich F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci, 2004, 61: 1401–1426



[22]Armstrong G A. Eubacteria shows their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants. J Bacteriol, 1994, 176: 4795–4802



[23]Park H, Kreunen S S, Cuttriss A J, DellaPenna D, Pogson B J. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell, 2002, 14: 321–332



[24]Cunningham F X, Gantt E. Idenification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli. Plant Cell Physiol, 2000, 41: 119–123



[25]Auldridge M E, Mccarty D R, Klee H J. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol, 2006, 9: 315–321



[26]Qin G, Gu H, Ma L, Peng Y, Deng X W, Chen Z, Qu L. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res, 2007, 17: 471–482



[27]Pyke K A, Leech R M. Chloroplast division and expansion is radically altered by nuclear mutations in Arabidopsis thaliana. Plant Physiol, 1992, 99: 1005–1008



[28]Pyke K A, Leech R M. A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol, 1994, 104: 201–207



[29]Joët T, Genty B, Josse E-M, Kuntz M, Cournac L, Peltier G. Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem, 2002, 277: 31623–31630



[30]Casano L M, Zapata J M, Martin M, Sabater B. Chlororespiration and poising of cyclic electron transport. J Biol Chem, 2000, 275: 942–948



[31]Miura E, Kato Y, Sakamoto W. Comparative transcriptome analysis of green/white variegated sectors in Arabidopsis yellow variegated 2: responses to oxidative and other stresses in white sectors. J Exp Bot, 2010, 61: 2433–2445

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!