欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 614-623.doi: 10.3724/SP.J.1006.2012.00614

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆异地衍生重组自交系群体遗传图谱的构建及比较

洪雪娟**,侯金锋**,丁卉,李永春,盖钧镒,邢邯*   

  1. 南京农业大学大豆研究所 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2011-07-05 修回日期:2011-10-13 出版日期:2012-04-12 网络出版日期:2012-01-04
  • 通讯作者: 邢邯, E-mail: hanx@njau.edu.cn, Tel: 025-84395219
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118400), 国家公益性行业(农业)科研专项(nycytx-004)和江苏高校优势学科建设工程资助项目资助。

Comparison of Two Genetic Maps of Soybean constructed by RIL Populations Derived from Combinations of Peking×7605 under Two Ecological Sites

HONG Xue-Juan**, HOU Jin-Feng**, DING Hui, LI Yong-Chun, GAI Jun-Yi,XING Han*   

  1. Soybean Research Institute of Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2011-07-05 Revised:2011-10-13 Published:2012-04-12 Published online:2012-01-04
  • Contact: 邢邯, E-mail: hanx@njau.edu.cn, Tel: 025-84395219

摘要: 以Peking×7605组合分别在济南和南京衍生大豆重组自交系群体JN(RN)P7和NJ(RN)P7,利用145个在亲本之间表现多态的SSR引物和1个形态学标记BSC (黑色种皮性状)及JoinMap 4.0软件构建了2张分别含27个和25个连锁群的大豆遗传图谱,其总长度分别为1 574.80 cM和1 682.50 cM,标记间平均距离分别是13.58 cM和15.72 cM,连锁群长度范围分别为17.30~127.40 cM和20.10~137.50 cM。所构建的两张图谱均与“公共图谱”对应性较好。两图谱间整体上较为一致,但也存在诸多不同点。表明原本具有相同遗传背景的杂交后代,在不同生态环境选择压力下形成的重组自交系群体间遗传结构存在真实差异。

关键词: 大豆, 异地衍生重组自交系, 遗传图谱, 构建, 真实差异

Abstract: Molecular linkage maps provide a powerful tool for the analysis of plant genome structure and function, and it is important to determine the effect of ecological environment on soybean genetic map construction. Two soybean recombinant inbred line (RIL) populations named “JN(RN)P7” and “NJ(RN)P7” were tested in this study, which were derived from Peking × 7605 at Jinan and Nanjing, respectively. One hundred and forty-five SSR markers and one morphologic marker (BSC) which had polymorphism between parents were screened out to construct two genetic linkage maps using JoinMap 4.0 software. And we obtained two soybean genetic maps, which contained 27 and 25 of the linkage groups, respectively. The total length of two genetic maps was 1 574.80 cM and 1 682.50 cM, and the average distance between markers was 13.58 cM and 15.72 cM, respectively. The length of linkage group varied from 17.30 to 127.40 cM for JN(RN)P7, and from 20.10 to137.50 cM for NJ(RN)P7. Both genetic maps were homologous with the public genetic map. The two maps constructed in this study were mostly coincident with each other, while certain differences were observed too, which indicated that there were some genetic structure differences between the two populations caused by the selection effect in various environments.

Key words: Soybean, RIL populations, Ecological sites, Genetic maps, Genetic structure differences

[1]Apuya N R, Frazier B L, Keim P, Roth J E, Lark K G. Restriction fragment length polymorphisms as genetic makers in soybean (G. max L. Merr.). Theor Appl Genet, 1988, 75: 889–901

[2]Lark K G, Weisemann J M, Matthews B F, Palmer R, Chase K, Macalma T. A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars: ‘Minosy’ and ‘Noir 1’. Theor Appl Genet, 1993, 86: 901–906

[3]Shoemaker R C, Olson T C. Molecular linkage map of soybean (G. max L. Merr.). In: O’Brien S J ed. Genetic Maps Locus Maps of Complex Genomes. New York: Cold Spring Harbor Laboratory Press, 1993. pp 6139–6148

[4]Akkaya M S, Shoemaker R C, Specht J E, Bhagwat A A, Cregan P B. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci, 1995, 35: 1439–1445

[5]Shoemaker R C, Specht J E. Integration of the soybean molecular and classical genetic linkage groups. Crop Sci, 1995, 35: 436–446

[6]Lee S H, Bailey M A, Mian M A R, Carter T E, Ashley D A, Hussey R S, Parrott W A, Boerma H R. Molecular markers associated with soybean plant height, lodging and maturity across locations. Crop Sci, 1996, 36: 728–735

[7]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336

[8]Cregan P B, Jarivk T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464–1490

[9]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128

[10]Zhang D-S(张德水), Dong W(董伟), Hui D-W(惠东威), Chen S-Y(陈受宜), Zhuang B-C(庄炳昌). Construct genome molecular marker linkage map using F2 population of cultivated/semi-wild soybean. Chin Sci Bull (科学通报), 1997, 42(12): 1326–1330 (in Chinese)

[11]Liu F(刘峰), Zhuang B-C(庄炳昌), Zhang J-S(张劲松), Chen S-Y(陈受宜). Construction and analysis of a genetic linkage map of soybean. Acta Genet Sin (遗传学报), 2000, 27(11): 1018–1026 (in Chinese with English abstract)

[12]Wu X-L(吴晓雷), He C-Y(贺超英), Wang Y-J(王永军) , Zhang Z-Y(张志永), Dong -Fang Y(东方阳), Zhang J-S(张劲松), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Construction and analysis of a genetic linkage map of soybean. Acta Genet Sin (遗传学报), 2001, 28(11): 1051–1061 (in Chinese with English abstract)

[13]Wang Y-J(王永军), Wu X-L(吴晓雷), Yu D-Y(喻德跃), Zhang Y-M(章元明), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Method of evaluation and adjustment of recombinant inbred line population and its application to the soybean RIL population NJRIKY. Acta Agron Sin (作物学报), 2004, 30: 413–418 (in Chinese with English abstract)

[14]Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131–1139

[15]Yang J(杨喆), Guan R-X(关荣霞), Wang Y-Q(王跃强), Liu Z-W(刘章雄), Chang R-Z(常汝镇), Wang S-M(王曙明), Qiu L-J(邱丽娟). Construction of genetic map and QTL analysis for some agronomic traits in soybean. J Plant Genet Resour (植物遗传资源学报), 2004, 5(4): 309–314 (in Chinese with English abstract)

[16]Wan Y-S(宛煌嵩), Wang Z(王珍), Xiao Y-H(肖英华), Lü P(吕蓓), Fang X-J(方宣钧). A soybean genetic linkage map comprising of 227 SSR loci in a soybean RIL population. Mol Plant Breed (植物分子育种), 2005, 3(1): 15–20 (in Chinese with English abstract)

[17]Chen Q S(陈庆山), Zhang Z C(张忠臣), Liu C Y(刘春燕), Wang W Q(王伟权), Li W B(李文滨). Construction and analysis of soybean genetic map using recombinant inbred line of Charleston × Dongnong 594. Agric Sci China (中国农业科学), 2005, 38: 1312–1316 (in Chinese with English abstract)

[18]Lü Z-Z(吕祝章), Ding L-X(丁立孝), Tian J-C(田纪春), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). A genetic map of soybean using a recombinant inbred line population (ZKS-HX) and mapping of morphological markers. Plant Physiol Commun (植物生理通讯), 2009, 45(4): 345–350 (in Chinese with English abstract)

[19]Cheng L-G(程利国). Construction of Genetic Linkage Map and QTL Mapping of Important Traits in Soybean (Glycine max L. Merr.). Nanjing: MS of Disseratation of Nanjing Agricultural University, 2008 (in Chinese with English abstract)

[20]Zhou B(周斌), Xing H(邢邯), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Density-enhanced genetic linkage map of RIL population NJRIKY and its impacts on mapping genes and QTLs in soybean. Acta Agron Sin (作物学报), 2010, 36: 36–46

[21]Wang L-Z(王连铮), Wang J-L(王金陵). Soybean Genetics and Breeding. Beijing: Science Press, 1992 (in Chinese)

[22]Zhao T-J(赵团结), Gai J-Y(盖钧镒), Li H-W(李海旺), Xing H(邢邯), Qiu J-X(邱家驯). Advances in breeding for super high-yielding soybean cultivars. Sci Agric Sin (中国农业科学), 2006, 39(1): 29–37 (in Chinese with English abstract)

[23]Li Y-C(李永春), Yu D-Y(喻徳跃), Xu R(徐冉), Gai J-Y(盖钧镒), Xing H(邢邯). Effects of natural selection of several quantitative traits of soybean RIL populations derived from the combinations of Peking×7605 and RN-9×7605 under two ecological sites. Sci Agric Sin (中国农业科学), 2008, 41(7): 1917–1926 (in Chinese with English abstract)

[24]Wang H-L(王宏林). Establishment and Characterization of RIL Populations and Their Application in Mapping QTL for Main Agronomic Traits in Soybeans. Nanjing: MS Dissertation of Nanjing Agricultural University, 2001 (in Chinese with English abstract)

[25]Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735–742

[26]Konishi T, Abe K, Matsuura S, Yano Y. Distorter segregation of the esterase isozyme genotypes in barley (Horrdeum vulgare L.). Jpn J Genet, 1990, 65:411–416
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!