作物学报 ›› 2012, Vol. 38 ›› Issue (04): 606-613.doi: 10.3724/SP.J.1006.2012.00606
薛仁风,朱振东,王晓鸣,王兰芬,武小菲,王述民*
XUE Ren-Feng,ZHU Zhen-Dong,WANG Xiao-Ming,WANG Lan-Fen,WU Xiao-Fei,WANG Shu-Min*
摘要: 钙调素蛋白(calmodulin,CaM)作为植物细胞内介导多种功能的Ca2+结合蛋白,在调节植物的生长发育和抗病性方面具有重要作用。利用普通菜豆(Phaseolus vulgaris L.)表达序列标签(EST)克隆了含有编码普通菜豆CaM基因的cDNA序列。序列分析表明,cDNA片段长713 bp,命名为PvCaM1,具有一个453 bp的开放阅读框(ORF),GenBank登录号为JN418801,该基因编码150个氨基酸,预测蛋白质分子质量为17.16 kD。蛋白质结构分析表明,PvCaM1蛋白含有4个Ca2+结合结构域(EF-hand)。同源分析结果显示,PvCaM1基因与百脉根、西瓜的CaM基因亲缘关系最近,分别达到77%和76%。荧光定量PCR分析表明,PvCaM1基因受尖孢镰孢菌菜豆专化型FOP-DM01菌株诱导表达,接种病原菌96 h,抗病品种260205根中PvCaM1基因的表达量达到最高,而感病品种BRB-130达到最低,260205叶中PvCaM1基因的表达量均高于BRB-130,而且叶中的表达量高于根和茎中的表达量。PvCaM1基因表达量也受外源植物激素脱落酸、茉莉酸甲酯和乙烯利诱导上调,在根、茎、叶中均有不同程度的表达。本研究表明PvCaM1基因可能通过脱落酸、茉莉酸和乙烯等信号途径参与菜豆对FOP-DM01菌株的防御反应,推测菜豆PvCaM1基因与镰孢菌枯萎病的抗病性有一定关联。
[1]Buruchara R A, Camacho L. Common bean reaction to Fusarium oxysporum f. sp. phaseoli, the cause of severe vascular wilt in Central Africa. J Phytopathol, 2000, 148(1): 39–45[2]Pastor C, Abawi G S. Reactions of selected bean germplasm to infection by Fusarium oxysporum f. sp. phaseoli. Plant Dis, 1987, 71: 990–993[3]Salgado M O, Schwartz H F, Brick M A. Inheritance of resistance to a Colorado race of Fusarium oxysporum f. sp. phaseoli in common beans. Plant Dis, 1995, 79: 279–281[4]Miklas P N, Kelly J D, Beebe S E, Blair M W. Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica, 2006, 147: 105–131[5]Zielinski R E. Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Biol, 1998, 49: 697–725[6]Yang T, Segal G, Abbo S, Feldman M, Fromm H. Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol Gen Genet, 1996, 252: 684–694[7]Snedden W A, Fromm H. Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci, 1998, 3: 299–304[8]Barnett M J, Long S R. Nucleotide sequence of an alfalfa calmodulin cDNA. Nucl Acids Res, 1990, 18: 3395[9]Chandra A, Thungapathra M, Upadhyaya K C. Molecular cloning and characterization of a calmodulin gene from Arabidopsis thaliana. J Plant Biochem Biotachnol, 1994, 3: 31–35[10]Chye M L, Liu C M, Tan C T. A cDNA clone encoding Brassica calmodulin. Plant Mol Biol. 1995, 27: 419–423[11]Duval F D, Renard M, Jaquinod M, Biou V, Montrichard F, Macherel D. Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds. Plant J, 2002, 32: 481–493[12]Lee S H, Kim J C, Lee M S, Heo, W D, Seo H Y, Yoon H W, Hong J C, Lee S Y, Bahk J D, Hwang I. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem, 1995, 270: 21806–21812[13]Ling V, Assmann S M. Cellular distribution of calmodulin and calmodulin-binding proteins in Vicia faba L. Plant Physiol. 1992, 100: 970–978[14]Nath M, Goel A, Taj G, Kumar A. Molecular cloning and comparative in silico analysis of calmodulin genes from cereals and millets for understanding the mechanism of differential calcium accumulation. J Prot Bioinform, 2010, 3: 294–301[15]Takezawa D, Liu Z H, An G, Poovaiah B W. Calmodulin gene family in potato: developmental and touch-induced expression of the mRNA encoding a novel isoform. Plant Mol Biol, 1995, 27: 693–703[16]Watillon B, Kettmann R, Boxus P, Burny A. Cloning and characterization of an apple (Malus domestica L. Borkh) calmodulin gene. Plant Sci, 1992, 82: 201–212[17]Wang Y-H(王艳辉), Jia H(贾慧), Si H-L(司贺龙), Ma J-F(马继芳), Hao H-F(郝会芳), Dong J-G(董金皋). Change of calmodulin in corn leaf cell with different resistant genes under stress of HT-toxin from Exserohilum turcicum. J Hebei Agric Univ (河北农业大学学报), 2007, 30: 4–7 (in Chinese with English abstract)[18]Hong Bo S, Li Ye C, Ming A S. Calcium as a versatile plant signal transducer under soil water stress. Bioessays, 2008, 30: 634–641[19]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273[20]Kidd B N, Kadoo N Y, Dombrecht B, Tekeo Lu M, Gardiner D M, Thatcher L F, Aitken E A B, Schenk P, Manners J, Kazan K. Auxin signaling and transport promote susceptibility to the root infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol Plant Microbe Interact, 2011, 24: 733–748[21]Leon-Reyes A, Du Y, Koornneef A, Proietti S, Körbes A P, Memelink J, Pieterse C M J, Ritsema T. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol Plant Microbe Interact, 2010, 23(2): 187–197[22]Kim M C, Chung W S, Yun D J, Cho M J. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant, 2009, 2(1): 13–21[23]Wang Q, Chen B, Liu P, Zheng M, Wang Y, Cui S, Sun D, Fang X, Liu C M, Lucas W J. Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem, 2009, 284: 12000–12007[24]Heo W D, Lee S H, Kim M C, Kim J C, Chung W S, Chun H J, Lee K J, Park C Y, Park H C, Choi J Y. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA, 1999, 96: 766–771[25]Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y. Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur J Biochem, 2001, 268: 3916–3929[26]Huo J-F(霍建飞), Song S-S(宋水山), Li X(李星), Yang W-X(杨文香), Liu D-Q(刘大群). Research on CaM and its isform genes involved in the resistance response of wheat to Puccinia triticina. Acta Agron Boreali-Sin (华北农学报), 2010, 25(4): 175–179 (in Chinese with English abstract)[27]Liu X-Y(刘新颖), Wang X-J(王晓杰), Xue J(薛杰), Xia N(夏宁), Deng L(邓麟), Cai G-L(蔡高磊), Tang C-L(汤春蕾), Wei G-R(魏国荣), Huang L-L(黄丽丽), Kang Z-S(康振生). Cloning and expression analysis of a novel calmodulin isoform TaCaM5 from wheat. Acta Agron Sin (作物学报), 2010, 36(6): 953–960 (in Chinese with English abstract)[28]Herman R, Zvirin Z, Kovalski I, Freeman S, Denisov Y, Zuri G, Katzir N, Perl-Treves R, Pitrat M. Characterization of Fusarium race 1, 2 resistance in melon and mapping of a major QTL for this trait near a fruit netting locus. In: Pitrat M ed. The IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. Avignon (France): INRA. Centre de Recherche d'Avignon. Unité Génétique et Amélioration des Fruits et Légumes, Montfavet, 2008. pp 149–156[29]Berrocal-Lobo M, Molina A. Arabidopsis defense response against Fusarium oxysporum. Trends Plant Sci, 2008, 13: 145–150[30]Kazan K, Manners J M. Jasmonate signaling: toward an integrated view. Plant Physiol, 2008, 146: 1459–1468[31]Koornneef A, Pieterse C M J. Cross talk in defense signaling. Plant Physiol, 2008, 146: 839–844[32]Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol, 2005, 8: 532–540[33]Yang T, Lev-Yadun S, Feldman M, Fromm H. Developmentally regulated organ-, tissue-, and cell-specific expression of calmodulin genes in common wheat. Plant Mol Biol, 1998, 37(1): 109–120[34]Yue H-L(岳海林), Deng X-X(邓秀新), Peng S-A(彭抒昂). Expression of calmodulin mRNAs in ovaries and fruitlets of pear. Sci Agric Sin (中国农业科学), 2008, 41(1): 176–181 (in Chinese with English abstract) |
[1] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[2] | 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能 分析[J]. 作物学报, 2018, 44(7): 1021-1031. |
[3] | 薛仁风, 王利, 丰明, 葛维德. 普通菜豆中烟草水杨酸结合蛋白2同源基因的鉴定及表达特征分析[J]. 作物学报, 2018, 44(05): 642-649. |
[4] | 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368. |
[5] | 耿庆河,王兰芬,武晶,王述民. 普通菜豆籽粒大小与形状的QTL定位[J]. 作物学报, 2017, 43(08): 1149-1160. |
[6] | 朱吉风,武晶,王兰芬,朱振东,王述民*. 菜豆普通细菌性疫病抗性基因定位[J]. 作物学报, 2017, 43(01): 1-8. |
[7] | 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 . |
[8] | 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆品种苗期抗旱性鉴定[J]. 作物学报, 2015, 41(06): 963-971. |
[9] | 陈明丽,王兰芬,武晶,张晓艳,杨广东,王述民1. 普通菜豆基因组SSR标记开发及在豇豆和小豆中的通用性分析[J]. 作物学报, 2014, 40(05): 924-933. |
[10] | 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆抗旱生理特性[J]. 作物学报, 2014, 40(04): 702-710. |
[11] | 郭涛,黄永相,罗文龙,黄宣,王慧,陈志强,刘永柱. 水稻叶色白化转绿及多分蘖矮秆突变体hfa-1的基因表达谱分析[J]. 作物学报, 2013, 39(12): 2123-2134. |
[12] | 杨在东,马信,吴世文,王宏伟,孙鑫,冀宪领,李安飞,孔令让. 小麦NPR1-like基因的克隆及赤霉菌诱导下的表达分析[J]. 作物学报, 2013, 39(10): 1775-1782. |
[13] | 薛仁风,朱振东,黄燕,王晓鸣,王兰芬,王述民. 应用荧光定量PCR 技术分析普通菜豆品种中尖镰孢菜豆专化型定殖量[J]. 作物学报, 2012, 38(05): 791-799. |
[14] | 王坤;王晓鸣;朱振东;赵晓彦;张晓艳;王述民. 以SSR标记对普通菜豆抗炭疽病基因定位[J]. 作物学报, 2009, 35(3): 432-437. |
[15] | 杨鸯鸯;李云;丁勇;徐雷;张成桂;刘英;甘莉. 甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达[J]. 作物学报, 2009, 35(1): 71-78. |
|