欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1029-1041.doi: 10.3724/SP.J.1006.2012.01029

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

国内外烤烟品种农艺性状的遗传多样性及与SRAP标记的关联分析

张吉顺,王仁刚,杨春元,吴春,史跃伟,王志红,王轶,任学良*   

  1. 贵州省烟草科学研究所,贵州贵阳 550081
  • 收稿日期:2011-11-02 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-03-29
  • 通讯作者: 任学良, E-mail: renxuel@126.com, Tel: 0851-4117133
  • 基金资助:

    本研究由贵州省科技厅农业攻关项目(黔科合NY字[2011]3047号)和国家烟草专卖局重点项目(中烟办[2010]221号)资助。

Genetic Diversity of Agronomic Traits and Association Analysis with SRAP Markers in Flue-Cured Tobacco (Nicotiana tabacum) Varieties from Home and Abroad

ZHANG Ji-Shun,WANG Ren-Gang,YANG Chun-Yuan,WU Chun,SHI Yue-Wei,WANG Zhi-Hong,WANG Yi,REN Xue-Liang*   

  1. Guizhou Institute of Tobacco Sciences, Guiyang 550081, China
  • Received:2011-11-02 Revised:2012-02-22 Published:2012-06-12 Published online:2012-03-29
  • Contact: 任学良, E-mail: renxuel@126.com, Tel: 0851-4117133

摘要: 选取258份国内外烤烟品种,在2个试验点调查13个农艺性状,利用16对引物组合获得的597个SRAP标记进行分子遗传多样性和群体结构分析,选取适宜的模型进行农艺性状与SRAP标记间关联分析。结果表明,参试品种表型和基因型变异丰富,国内品种的遗传多样性低于国外品种。总材料可分为7个亚群,分类结果与材料的地理来源和遗传背景显著相关,国外材料遗传结构相对复杂。通过比较发现MIM_Q+K和MIM_PCA+K为该群体最优的关联分析模型,共检测到18个SRAP标记与6个农艺性状显著关联(Log P>2, P<0.01),其中me1/em9-16,me1/em9-36,me4/em9-1与株高、me1/em2-14,me7/em5-34与叶片数、me6/em2-6与脚叶宽、me2/em6-15与腰叶长在不同环境下均显著关联。

关键词: 烤烟, 遗传多样性, 农艺性状, 关联分析, SRAP标记

Abstract: To assess the genetic diversity of flue-cured tobacco germplasm, developing the elite gene resources, we selected 258 flue-cured tobacco varieties from home and abroad to investigate 13 agronomic traits in two locations with different environments. The genetic diversity and population structure were analyzed with 597 SRAP markers produced by 16 primer combinations. Different association models were tested and the most effective model was chosen for the population to make the association analysis between agronomic traits and SRAP markers. The results revealed that abundant phenotypic and genetic diversity existed in the flue-cured tobacco germplasm accessions. Flue-cured tobaccos from China showed less diversity than those from other countries. The accessions could be divided into seven subpopulations and the classification result was significantly correlation with geographic origins and hereditary relationship. Population structure within exotic varieties was multiplex. MIM_Q+K and MIM_PCA+K were effective models for association analysis between agronomic traits and SRAP markers. A total of 18 markers were found to be significantly associated (–log P>2, P<0.01) with six agronomic traits. Among them, markers associated with plant height (me1/em9-16, me1/em9-36, me4/em9-1), leaf number (me1/em2-14, me7/em5-34), bottom leaf width (me6/em2-6) and lumbar leaf length (me2/em6-15) were stably detected in different environments. This study provides evidence for identification of elite flue-cured tobacco germplasm, prediction of candidate gene and marker-assisted selection.

Key words: Flue-cured tobacco (Nicotiana tabacum), Genetic diversity, Agronomic traits, Association analysis, SRAP marker

[1]Goodspeed T H. The genus Nicotiana. Waltham, Massachusettes: Chronica Botanica Press, 1954. pp 1-536

[2]Lim K Y, Matyasek R, Kovarik A, Leitch A R. Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc, 2004, 82: 599-606

[3]Zhang H Y, Liu X Z, Wei L, Zhou LY, Yang Y M. Insect-resistant transgenic tobacco plants containing both Bt and GNA genes. Biol Plant, 2007, 51: 746-748

[4]Wang Y-Y(王元英), Zhou J(周健). Parentage analysis of major tobacco varieties and tobacco breeding in America and China. Acta Tab Sin (中国烟草学报), 1995, 2(3): 11-22 (in Chinese with English abstract)

[5]Julio E, Denoyes-Rothan B, Verrier J L, Dorlhac de Borne F. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69-91

[6]Cai C-C(蔡长春), Chai L-G(柴利广), Wang Y(王毅), Xu F-S(徐芳森), Zhang J-J(张俊杰), Lin G-P(林国平). Construction of genetic linkage map of burley tobacco (Nicotiana tabacum L.) and genetic dissection of partial traits. Acta Agron Sin (作物学报), 2009, 35(9): 1646-1654 (in Chinese with English abstract)

[7]Li H-L(李华丽), Chen M-X(陈美霞), Zhou D-X(周东新), Chen S-H(陈顺辉), Tao A-F(陶爱芬), Li Y-K(李延坤), Ma H-B(马红勃), Qi J-M(祁建民), Guo Y-C(郭玉春). QTL analysis of six important traits in tobacco (Nicotiana tabacum L.). Acta Agron Sin (作物学报), 2011, 37(9): 1577-1584 (in Chinese with English abstract)

[8]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289

[9]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356

[10]Breseghello F, Sorrells M S. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177

[11]Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Association analysis of agronomic trait QTLs with SSR markers in released soybean cultivars. Acta Agron Sin (作物学报), 2008, 34(12): 2059-2069 (in Chinese with English abstract)

[12]Cardon L R, Palmer J L. Population stratification and spurious allelic association. Lancet, 2003, 361: 598-604

[13]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959

[14]Yu J M, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. An unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208

[15]Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38, 904-909

[16]Zhu C, Yu J. Nonmetric multidimensional scaling corrects for population structure in whole genome association studies. Genetics, 2009, 182: 875-888

[17]Li Q, Yu K. Improved correction for population stratification in genome-wide association studies by identifying hidden population structures. Genet Epidemiol, 2008, 32: 215-226

[18]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP): a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455-461

[19]Liu Y-H(刘艳华), Wang Z-D(王志德), Mou J-M(牟建民), Liu J-F(刘建丰), Dai P-G(戴培刚). Genetic diversity analysis on different tobacco populations. Sci Tab Sin (中国烟草科学), 2009, Z1: 19-24 (in Chinese with English abstract)

[20]Ma H-B(马红勃), Qi J-M(祁建民), Li Y-K(李延坤), Liang J-X(梁景霞), Wang T(王涛), Lan T(兰涛), Chen S-H(陈顺辉), Tao A-F(陶爱芬), Lin L-H(林荔辉), Wu J-M(吴建梅). Construction of a molecular genetics map of tobacco based on SRAP and ISSR markers. Acta Agron Sin (作物学报) , 2008, 34(11): 1958-1963 (in Chinese with English abstract)

[21]Wang Z-D(王志德), Wang Y-Y(王元英), Mou J-M(牟建民). Descriptors and Data Standard for Tobacco Germplasm (烟草种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006. pp 1-91 (in Chinese)

[22]Doyle J J, Doyle J I. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 149-151

[23]Ferriol M, Pieoó B, Nuez E. Genetic diversity of a germplasm collection of Cucurbits pepo using SRAP and AFLP markers. Theor Appl Genet, 2003, 107: 271-282

[24]Riaz A, Poner D, Stephen M. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J Am Soc Hort Sci, 2004, 129: 204-211

[25]Wang L Q, Liu W J, Xu Y, He Y Q, Luo L J, Xing Y Z, Xu C G, Zhang Q F. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor Appl Genet, 2007, 115:463-476

[26]Poole R W. An introduction to quantitative ecology. NY, USA: McGraw-Hill, 1974. p 532

[27]Yeh F C, Yang R C, Boyle T. Popgene Version 1.31 Quick User Guide. Canada: University of Alberta, and Center for International Forestry Research, 1999

[28]Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction end nucleases. Proc Nat Acad Sci USA, 1979, 76: 5269-5273

[29]Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129

[30]Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes, 2007, 7: 574-578

[31]Evanno G, Regnaut S. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620

[32]Rohlf F J. NTSYS-pc: numerical taxonomy and multivariate analysis system, Version2.10. Exeter Software, Setauket, New York, USA. 2002

[33]Hardy O J. Estimation of pairwise relatedness between individuals and characterization of isolation-by -distance processes using dominant genetic markers, Mol Ecol, 2003, 12: 1577-1588

[34]Hardy O J, Vekemans X. SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population level. Mol Ecol Notes, 2002, 2: 618-620

[35]Bonin A, Ehrich D, Manel S. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol, 2007, 16: 3737-3758

[36]Qian W(钱韦), Ge S(葛颂). Analyses of population genetic structure by using dominant markers. Acta Genet Sin (遗传学报). 2001, 28(3): 244-255 (in Chinese with English abstract)

[37]Yang X H, Gao S B, Xu S T, Zhang Z X, Boddupalli M P, Lin L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed, 2010, doi: 10.1007/s11032-010-9500-7

[38]Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635

[39]Zhao K, Aranzana M J, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet, 2007, 3: e4

[40]Flint-Garcia S A, Thuillet A C, Yu J M, pressor G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054-1064

[41]Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5-20

[42]Tan X-J(谭贤杰), Wu Z-K(吴子凯), Cheng W-D(程伟东), Wang T-Y(王天宇), Li Y(黎裕). Association analysis and its application in plant genetic research. Acta Bot Sin (植物学报), 2011, 46(1): 108-118 (in Chinese with English abstract)

[43]Jena S N, Srivastava A, Singh U M, Roy S, Banerjee N, Rai K M, Singh S K, Kumar V, Chaudhary L B, Roy J K, Tuli R, Sawant S V. Analysis of genetic diversity, population structure and linkage disequilibrium in elite cotton (Gossypium L.) germplasm in India. Crop & Pasture Sci, 2011, 62: 859-875

[44]Andreas A, Tinker N A, Zechner E, Buerstmayr H. Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits. Theor Appl Genet, 2008, 117: 1041-1053

[45]D'hoop B B, Paulo M J, Mank R A, van Eck H J, van Eeuwijk F A. Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica, 2008, 161: 47-60

[46]Yin Y-J(伊艳杰), Hu N(胡楠), Liu H-Y(刘红彦), An L-Z(安黎哲), Liu X-T(刘新涛), Wang X-L(王勋陵). Identification and analysis of the SRAP markers linked with powdery mildew resistance gene in wheat. Henan Agric Sci (河南农业科学), 2007, (3): 60-62 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[5] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[6] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[7] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[8] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[9] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[10] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[11] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[12] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[13] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[14] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!