欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 947-953.doi: 10.3724/SP.J.1006.2012.00947

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础

王鹏,张天真*   

  1. 南京农业大学/作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2011-09-19 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-04-06
  • 通讯作者: 张天真, E-mail: cotton@njau.edu.cn, Fax: 025-84395307
  • 基金资助:

    本研究由国家自然科学基金项目(30730067),江苏省自然科学基金项目(创新学者攀登项目,BK2008036),高等学校创新引智计划项目(B08025)和江苏省博士后基金项目(0902022C)资助。

Genetic Dissection of Photosynthetic Pigment Content in Cotton Interspecific Chromosome Segment Introgression Lines

WANG Peng,ZHANG Tian-Zhen*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-09-19 Revised:2012-02-22 Published:2012-06-12 Published online:2012-04-06
  • Contact: 张天真, E-mail: cotton@njau.edu.cn, Fax: 025-84395307

摘要: 光合作用是棉花产量和品质的基础, 而光合色素在光能的吸收、传递和转换中起着重要作用。利用海陆棉种间连续回交和标记辅助选择培育的染色体片段导入系群体, 对棉花叶片中光合色素含量进行了QTL定位研究。通过软件QTLIciMapping 3.0, 检测到LOD>3.0的影响叶绿素a含量、叶绿素b含量、类胡萝卜素含量、叶绿素a/b值和叶绿素总含量等5个性状的44个QTL, 其中15个在2年中都被检测到。44个QTL主要分布在A1(chr.1)、A8(chr.8)、A9(chr.9)、A11(chr.11)、A13(chr.13)、D1(chr.15)、D3(chr.17)、D5(chr.19)、D6(chr.25)、D7(chr.16)、D8(chr.24)、D9(chr.23)、D10(chr.20)、D11(chr.21)和D12(chr.26)等15条染色体上, 可解释1.25%~5.59%的表型变异。发现SSR标记NAU3714(chr.D1)的染色体区段上存在提高叶绿素a和b含量、叶绿素总含量和类胡萝卜素含量等4性状的QTL, 结合修饰回交育种技术开展棉花的高光效育种可能带来棉花产量育种上的突破。

关键词: 染色体片段导入系, 海岛棉, 光合色素含量, QTL

Abstract: Photosynthesis provides an important foundation for cotton yield and fiber quality. Photosynthetic pigments play an important role in absorption, transfer, and transition of photo energy. In this study, quantitative trait loci (QTLs) mapping was conducted for leaf photosynthetic pigment content using interspecific chromosome segment introgression lines (CSIL). Forty four QTLs (LOD >3) for chlorophyll-a content, chlorophyll-b content, carotenoid content, chlorophyll-a/b ratio value and total chlorophyll content were detected in CSIL population by QTLIciMapping 3.0. Among them, fifteen QTLs were detected in two years. Forty four QTLs were located on fifteen chromosomes including A1(chr.1), A8(chr.8), A9(chr.9), A11(chr.11), A13(chr.13), D1(chr.15), D3(chr.17), D5(chr.19), D6(chr.25), D7(chr.16), D8(chr.24), D9(chr.23), D10(chr.20), D11(chr.21), and D12(chr.26) with the explained phenotypic variation of 1.25%–5.59%. QTLs (qCa-D1-1, qCb-D1-1, qCx.c-D1-1, and qTC-D1-1) influencing chlorophyll-a content, chlorophyll-b content, carotenoid content and total chlorophyll content were located near NAU3714 on chr.D1. It may make a breakthrough in increasing cotton yield through the breeding for high photosynthetic efficiency using the chromosome segment near NAU3714 with modified backcrossing pyramiding breeding (MBPB) technique.

Key words: Chromosome segment introgression lines, Gossypium barbadense, Photosynthetic pigment content, QTL

[1]Deng Z-C(邓仲篪), Qu B(瞿波), Deng X-X(邓秀新). Characteristics of chlorophyll components and chloroplast architecture in cotyledons of citrus reticulata blanco. J Huazhong Agric Univ (华中农业大学学报), 1992, 11(4): 327-332 (in Chinese with English abstract)

[2]Kohel R J. Analysis of irradiation induced virescent mutants and the identification of a new virescent mutant (v5v5v6v6) in Gossypium hirsutum L. Crop Sci, 1973, 13: 86-88

[3]Kohel R J. Genetic analysis of a new virescent mutant in cotton. Crop Sci, 1974, 14: 525-527

[4]Kohel R J. Genetic analysis of virescent mutants and the identification of virescents v12, v13, v14, v15 and v16v17 in upland cotton. Crop Sci, 1983, 23: 289-291

[5]Turcotte E L, Feaster V. The interaction of two genes for yellow foliage in cotton. J Heredity, 1973, 64: 231-232

[6]Turcotte E L, Percy R G. Inheritance of a second virescent mutant in American Pima cotton. Crop Sci, 1988, 28: 1018-1019

[7]Zhang T-Z(张天真), Pan J-J(潘家驹), Feng F-Z(冯福帧). Genetic identification of a genetic male-sterile line associated with virescent indicative character in upland cotton. Sci Agric Sin (中国农业科学), 1989, 22(4): 17-21 (in Chinese with English abstract)

[8]Zhang T-Z(张天真), Pan J-J(潘家驹). Heredity identification of 12 virescent mutants in uplant cotton. Acta Gossypii Sin (棉花学报), 1986, 2: 78-90 (in Chinese with English abstract)

[9]Zhang T-Z(张天真), Pan J-J(潘家驹). Identification of monosome and location of v16v17 duplicate virescent gene in upland cotton. Heredity (遗传), 1989, 11(6): 1-3 (in Chinese with English abstract)

[10]Zhang T-Z(张天真), Pan J-J(潘家驹). Allele examination of virescent mutant and genetic identification of v22 virescent gene in upland cotton. Jiangsu J Agric Sci (江苏农业学报), 1990, 6(1): 24-29 (in Chinese with English abstract)

[11]Pan J-J(潘家驹). Cotton Breeding (棉花育种). Beijing: China Agriculture Press, 1998. pp 60-82

[12]Zhang T Z, Pan J J, Xiao S H, Kohel R G. Interaction of virescent genes in upland cotton (Gossypium hirsutum L.): chlorophyll cotton. Crop Sci, 1997, 37: 1123-1126

[13]Saranga Y, Menz M, Jiang C X, Wright R J, Yakir D, Paterson A H. Genomic dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions. Genome Res, 2001, 11: 1988-1995

[14]Saranga Y, Jiang C X, Wright R J, Yakir D, Paterson A H. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Crop Sci, 2004, 27: 263-277

[15]Qin H-D(秦鸿德), Zhang T-Z(张天真). QTL mapping of leaf chlorophyll content and photosynthetic rates in cotton. Acta Gossypii Sin (棉花学报), 2008, 20(5): 394-398 (in Chinese with English abstract)

[16]Kohel R J, Lewis C F, Richmond T R. Texas marker-1: description of a genetic standard for Gossypium hirsutum L. Crop Sci, 1970, 10: 670-671

[17]Yang C, Guo W Z, Li G Y, Gao F, Lin S S, Zhang T Z. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci, 2008, 174: 290-298

[18]Bao W-K(包维楷), Leng L(冷俐). Determ ination methods for photosynthetic pigment content of bryophyte with special relation of extracting solvents. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11(2): 235-237 (in Chinese with English abstract)

[19]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14:11-13

[20]Fu J D, Yan Y F, Kim M Y, Lee S H, Lee B W. Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome, 2011, 54: 235-243

[21]Jiang G H, He Y Q, Xu G G, Li X H, Zhang Q. The genetic basis of stay-greed in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet, 2004, 108: 688-698

[22]Zuo H L, Xiao K, Zhang Y J, Zhang J Z, Gong Y J, Dong Y J. Mapping of QTLs controlling leaf chlorophyll content and chlorophyll degradation speed of detached leaves in rice. J Mol Cell Biol, 2007, 40: 346-350

[23]Li G-J(李广军), Li H-N(李河南), Cheng L-G(程利国), Zhang Y-M(章元明). QTL analysis for dynamic expression of chlorophyll content in soybean (Glycine max L. Merri.). Acta Agron Sin (作物学报), 2010, 36(2): 242-248 (in Chinese with English abstract)

[24]Cui S-Y(崔世友), Yu D-Y(喻德跃). QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean [Glycine max (L.) Merr.]. Acta Agron Sin (作物学报), 2007, 33(5): 744-750 (in Chinese with English abstract)

[25]Czyczy?o-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stoja?owski S, My?ków B, Milczarski P, Quarrie S. Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet Resour, 2011, 9: 291-295

[26]Yang D L, Jing R L, Chang X P, Li W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L.). J Integr Plant Biol, 2007, 49: 646-654

[27]Song X L, Guo W Z, Han Z G, Zhang T Z. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. J Integr Plant Biol, 2005, 47: 1382-1390

[28]Song X L, Zhang T Z. Molecular mapping of quantitative trait loci controlling chlorophyll content at different developmental stages in tetraploid cotton. Plant Breed, 2010, 129: 533-540

[29]Yu S X, Song M Z, Fan S L, Wang W, Yuan R H. Biochemical genetics of short-season cotton cultivars that express early maturity without senescence. Integr Plant Biol, 2005, 47: 334-342

[30]Zhang J(张建), Liu D-J(刘大军), Lin G(林刚), Zhang Z-S(张正圣). QTL mapping for chlorophyll content in upland cotton (Gossypium hirsutum L.). J Southwest Univ (Nat Sci Edn)(西南大学学报•自然科学版), 2011, 33(4): 1-4 (in Chinese with English abstract)

[31]Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome, 1999, 42:184-203

[32]Cronn R C, Small R L, Wendel J F. Duplicated genes evolve independently after polyploidy formation in cotton. Proc Natl Acad Sci USA, 1999, 96: 14406-14411

[33]Wendel J F, Brubaker C L, Percial E. Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot, 1992, 79: 1291-1310

[34]Chaudhry M R. Commercial cotton hybrids. The Int Cotton Advisory Committee Recorder, XV, 1997, 2: 3-14

[35]Meredith W R, Brown J S. Heterosis and combing ability of cottons originating from differen regions of the United States. J Cotton Sci, 1998, 2: 77-84

[36]Zhai H Q, Cao S Q, Kuang T Y, Cheng S H, Cao S C, Lu W, Min S K, Wan J M, Li L B, Zhu D F. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yield hybrid rice (Oryza sativa. L). Sci China (Ser C), 2002, 45: 637-646

[37]Cai W-J(蔡惟涓), Tu Z-P(屠曾平), Li X-L(李小林), Liu B(刘斌), Liang Z-Y(梁祖杨), Qiu R-H(邱润恒). Adaptability and productivity of photosynthesis in hybrid rice under different temperatures. Chin J Rice Sci (中国水稻科学), 1994, 8(3): 145-150 (in Chinese with English abstract)

[38]Zhao H-J(赵会杰), Zou Q(邹琦), Yu Z-W(于振文). Chlorophyll fluoresence analysis technique and its application to photosynthesis of plant. J Henan Agric Univ (河南农业大学学报), 2000, 34(3): 248-251 (in Chinese with English abstract)

[39]Peleman J D, van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330-334

[40]Guo W-Z(郭旺珍), Zhang T-Z(张天真), Zhu X-F(朱协飞), Pan J-J(潘家驹). Modified backcross pyramiding breeding with molecular marker-assisted selection and its applications in cotton. Acta Agron Sin (作物学报), 2005, 31(8): 963-970 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[4] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[5] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[6] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[7] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[8] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[9] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[10] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[11] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[12] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[13] 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890.
[14] 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387.
[15] 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!