欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1452-1459.doi: 10.3724/SP.J.1006.2012.01452

• 耕作栽培·生理生化 • 上一篇    下一篇

散射光和直射光对高粱叶片光合功能的影响

王晓琳1,2,李志强3,姜闯道1,石雷1,邢全1,刘立安1   

  1. 1 中国科学院植物研究所,北京 100093;2 中国科学院研究生院,北京 100049;3 北京市农业职业技术学院,北京 102442
  • 收稿日期:2011-12-28 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 姜闯道, E-mail: jcdao@ibcas.ac.cn
  • 基金资助:


    本研究由国家自然科学基金项目(30871455)和北京市自然科学基金项目(6122025)资助。

Effects of Diffuse and Direct Lights on Photosynthetic Function in Sorghum Leaf

WANG Xiao-Lin1,2,LI Zhi-Qiang3,JIANG Chuang-Dao1,SHI Lei1,XING Quan1,LIU Li-An1   

  1. 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3 Beijing Vocational College of Agriculture, Beijing 102442, China
  • Received:2011-12-28 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-04
  • Contact: 姜闯道, E-mail: jcdao@ibcas.ac.cn

摘要: C4等面叶作物背腹侧结构相似并分别暴露在散射光和直射光下。为阐述散射光和直射光对其光合功能的驱动作用,以高粱为材料,研究了散射光和直射光对叶片背腹侧光合功能的影响。结果表明,高粱叶片背腹侧解剖结构相似,其光谱学特性差异很小, 与近轴侧相比,远轴侧的气孔密度、气孔下腔面积、维管束鞘细胞与叶肉细胞接触面积较大; 在相同直射光下近、远轴侧均具有较高的光合速率, 在近轴侧照光同时用PE膜封闭叶片受光侧气孔,观察到远轴侧在叶片自身透射光下能够维持较高的净光合速率;相反,近轴侧在自身透射光下光合速率很低; 自然光照条件下一天内直射光和散射光强度差异很大,大部分时间的散射光强度明显低于远轴侧光补偿点。由此认为,高粱远轴侧光合作用主要由自身透射光驱动,散射光作用很小,该特性是对光环境的适应。这对田间等面叶作物生产管理、生态系统生产力的研究和高光效育种有重要意义。

关键词: 直射光, 散射光, 结构, 光合

Abstract: The effects of direct and diffuse lights on the leaf-side-specific regulation of photosynthesis were studied in sorghum, a typical C4 plant. Leaf morphology and structure were carefully investigated by semithin cross section of sorghum leaves. Leaf absorption, transmittance and reflectance profiles were similar on the adaxial and abaxial leaf surfaces across the light spectrum from 400 to 800 nm, whether light was illuminated via the adaxial or abaxial surface. The photosynthetic light-response curves showed that maximal whole photosynthetic rates were higher when the light entered the leaf via the adaxial surface than the abaxial surface. The changing trend of stomatal conductance was similar with photosynthetic light-response curves. However, the maximal photosynthetic rates were much lower when the light entered the leaf via the abaxial surface than adaxial surface when blocking the stomata of light-oriented side by PE membrane. Theintensity of direct and diffuse lights varied widely in a day, and that of diffuse light was significantly lower than light compensate point (Ic) of abaxial leaf surfaces in sorghum. Consequently, photosynthetic rate of abaxial leaf surface in sorghum should be mainly droved by self-transmitted light but not diffuse light. Differences in stomatal density, substomatic cavity, contacting areas between bundle sheath and mesophyll cells are related to this feature of abaxial leaf surfaces. is the findings of the present study are important for field management, investigation of ecosystem productivity and breeding for high photosynthetic efficiency.

Key words: Direct light, Diffuse light, Leaf structure, Photosynthesis

[1]Smith W K, Vogelmann T C, Delucia E H, Bell D T, Shepherd K A. Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate inter light and carbon dioxide? Bioscience, 1997, 47: 785–793

[2]Moss D N. Optimum lighting of leaves. Crop Sci, 1964, 4: 131–135

[3]Vogelmann T C, Bornman J F, Yates D. Focusing of light by leaf epidermal cells. Physiol Plant, 1996, 98: 43–56

[4]Takahashi S, Inoue Y. Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camellia japonica L.: functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant Cell Physiol, 1984, 25: 555–563

[5]Brodersen C R, Vogelmann T C, Williams W E, Gorton H L. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. Plant Cell Environ, 2008, 31: 159–164

[6]Mauseth D J. Botany: an Introduction to Plant Biology. Sudbury, MA: Jones and Bartlett Publishers, 1998

[7]Long S P, Farage P K, Bolhfir-Nordenkampf H R, Rohrhofer U. Separating the contribution of the upper and lower mesophyll to photosynthesis in Zea mays L. leaves. Planta, 1989, 177: 207–216

[8]Driscoll S P, Prins A, Olmos E, Kunert K J, Foyer C H. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J Exp Bot, 2006, 57: 381–390

[9]Soares A S, Driscoll S P, Pellny T K, Olmos E, Arrabaca M C, Foyer C H. Variations in the dorso-ventral organization of leaf structure and kranz anatomy coordinate the control of photosynthesis and associated signaling at the whole leaf level in monocotyledonous species. Plant Cell Environ, 2009, 32: 1833–1844

[10]Li D-J(黎大爵), Liao F-S(廖馥荪). Sweet Sorghum and Utility (甜高粱及其应用). Beijing: Science Press, 1992. p 7 (in Chinese)

[11]Ge J-L(葛江丽), Shi L(石雷), Gu W-B(谷卫彬), Tang Y-D(唐宇丹), Zhang J-Z(张金政), Jiang C-D(姜闯道), Ren D-M(任大明). Photosynthetic characteristics and the regulation of photosystem Ⅱ function in salt-stressed sweet sorghum seedlings. Acta Agron Sin (作物学报), 2007, 33(8): 1272–1278 (in Chinese with English abstract)

[12]Wang X(王鑫), Li Z-Q(李志强), Gu W-B(谷卫彬), Shi L(石雷), Tang Y-D(唐宇丹), Gao H-Y(高辉远), Zhao S-J(赵世杰). Systemic regulation of anatomic structure and photosynthetic characteristics of developing leaves in sorghum seedlings under salt stress. Acta Agron Sin (作物学报), 2010, 36(11): 1941–1949 (in Chinese with English abstract)

[13]Terashima I. Anatomy of non-uniform leaf photosynthesis. Photosynth Res, 1992, 31: 195–212

[14]Morison J I L , Lawson T. Does lateral gas diffusion in leaves matter? Plant Cell Environ, 2007, 30: 1072–1085

[15]Smith W K. C4 leaf curling-coupling incident light, stomatal and photosynthetic asymmetries. New Phytol, 2008, 177: 5–8

[16]Soares A S. Dorsoventral variations in dark chilling effects onphotosynthesis and stomatal function in Paspalum dilatatumleaves. J Exp Bot, 2010, 62: 687–699

[17]Li P M, Cheng L, Peng T, Gao H Y. CO2 assimilation and chlorophyll fluorescence in green versus red Berberis thunbergii leaves measured with different quality irradiation. Photosynthetica, 2009, 47: 11–18

[18]Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytol, 1999, 143: 105–117

[19]Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337–354

[20]Thain J F. Curvature correction factors in the measurement of cell surface areas in plant tissues. J Exp Bot, 1983, 34: 87–94

[21]Smith W K, Bell D T, Shepherd K A. Associations between leaf srtructure, orientation, and sunlight exposure in five western Australian communities. Am J Bot, 1998, 85: 56–62

[22]Oguchi R, Hikosaka K, Hiura T. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ, 2005, 28: 916–927

[23]Delucia E H, Shenoi H D, Naidu S L, Day T A. Photosynthetic symmetry of sun and shade leaves of different orientations. Oecologia, 1991, 87: 51–57

[24]Soares A S, Driscoll S P, Olmos E, Harbinson J, Arrabaça M C, Foyer C H. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum. New Phytol, 2007, 177: 186–199

[25]Ehleringer J R, Bjorkman O. Pubescence and Leaf spectral characteristics in a desert shrub, Encelia farinose. Oecologia (Berl.), 1978, 36: 151–162

[26]Wang Y, Noguchi K, Terashima L. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Environ, 2008, 31: 1307–1316

[27]Sowiński P, Szczepanik J and Minchin E H. On the mechanism of C4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses. J Exp Bot, 2008, 59: 1137–1147

[28]Gorton H L, Brodersen C R, Williams W E, Vogelmann T C. Measurement of the optical properties of leaves under diffuse light. Photochem Photobiol, 2010, 86(5): 1076–1083

[29]Delayney R H. Morphological and anatomical features of alfalfa leaves related to CO2 exchange. Crop Sci, 1974, 14: 444–447

[30]Sun T-X(孙同兴), Zhang X(张昕), Zhang C-S(张长胜), Lin J-X(林金星), Hu Y-X(胡玉喜). Effects of doubled CO2 on the leaf morphology and structure of alfalfa. J Laiyang Agric Coll (莱阳农学院学报), 1999, 16(1): 1–5 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[4] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[5] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[6] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[7] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[8] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[9] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
[10] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[11] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[12] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[13] 吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征[J]. 作物学报, 2021, 47(5): 915-928.
[14] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941.
[15] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!