作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1452-1459.doi: 10.3724/SP.J.1006.2012.01452
王晓琳1,2,李志强3,姜闯道1,石雷1,邢全1,刘立安1
WANG Xiao-Lin1,2,LI Zhi-Qiang3,JIANG Chuang-Dao1,SHI Lei1,XING Quan1,LIU Li-An1
摘要: C4等面叶作物背腹侧结构相似并分别暴露在散射光和直射光下。为阐述散射光和直射光对其光合功能的驱动作用,以高粱为材料,研究了散射光和直射光对叶片背腹侧光合功能的影响。结果表明,高粱叶片背腹侧解剖结构相似,其光谱学特性差异很小, 与近轴侧相比,远轴侧的气孔密度、气孔下腔面积、维管束鞘细胞与叶肉细胞接触面积较大; 在相同直射光下近、远轴侧均具有较高的光合速率, 在近轴侧照光同时用PE膜封闭叶片受光侧气孔,观察到远轴侧在叶片自身透射光下能够维持较高的净光合速率;相反,近轴侧在自身透射光下光合速率很低; 自然光照条件下一天内直射光和散射光强度差异很大,大部分时间的散射光强度明显低于远轴侧光补偿点。由此认为,高粱远轴侧光合作用主要由自身透射光驱动,散射光作用很小,该特性是对光环境的适应。这对田间等面叶作物生产管理、生态系统生产力的研究和高光效育种有重要意义。
[1]Smith W K, Vogelmann T C, Delucia E H, Bell D T, Shepherd K A. Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate inter light and carbon dioxide? Bioscience, 1997, 47: 785–793[2]Moss D N. Optimum lighting of leaves. Crop Sci, 1964, 4: 131–135[3]Vogelmann T C, Bornman J F, Yates D. Focusing of light by leaf epidermal cells. Physiol Plant, 1996, 98: 43–56[4]Takahashi S, Inoue Y. Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camellia japonica L.: functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant Cell Physiol, 1984, 25: 555–563[5]Brodersen C R, Vogelmann T C, Williams W E, Gorton H L. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. Plant Cell Environ, 2008, 31: 159–164[6]Mauseth D J. Botany: an Introduction to Plant Biology. Sudbury, MA: Jones and Bartlett Publishers, 1998[7]Long S P, Farage P K, Bolhfir-Nordenkampf H R, Rohrhofer U. Separating the contribution of the upper and lower mesophyll to photosynthesis in Zea mays L. leaves. Planta, 1989, 177: 207–216[8]Driscoll S P, Prins A, Olmos E, Kunert K J, Foyer C H. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J Exp Bot, 2006, 57: 381–390[9]Soares A S, Driscoll S P, Pellny T K, Olmos E, Arrabaca M C, Foyer C H. Variations in the dorso-ventral organization of leaf structure and kranz anatomy coordinate the control of photosynthesis and associated signaling at the whole leaf level in monocotyledonous species. Plant Cell Environ, 2009, 32: 1833–1844[10]Li D-J(黎大爵), Liao F-S(廖馥荪). Sweet Sorghum and Utility (甜高粱及其应用). Beijing: Science Press, 1992. p 7 (in Chinese)[11]Ge J-L(葛江丽), Shi L(石雷), Gu W-B(谷卫彬), Tang Y-D(唐宇丹), Zhang J-Z(张金政), Jiang C-D(姜闯道), Ren D-M(任大明). Photosynthetic characteristics and the regulation of photosystem Ⅱ function in salt-stressed sweet sorghum seedlings. Acta Agron Sin (作物学报), 2007, 33(8): 1272–1278 (in Chinese with English abstract)[12]Wang X(王鑫), Li Z-Q(李志强), Gu W-B(谷卫彬), Shi L(石雷), Tang Y-D(唐宇丹), Gao H-Y(高辉远), Zhao S-J(赵世杰). Systemic regulation of anatomic structure and photosynthetic characteristics of developing leaves in sorghum seedlings under salt stress. Acta Agron Sin (作物学报), 2010, 36(11): 1941–1949 (in Chinese with English abstract)[13]Terashima I. Anatomy of non-uniform leaf photosynthesis. Photosynth Res, 1992, 31: 195–212[14]Morison J I L , Lawson T. Does lateral gas diffusion in leaves matter? Plant Cell Environ, 2007, 30: 1072–1085[15]Smith W K. C4 leaf curling-coupling incident light, stomatal and photosynthetic asymmetries. New Phytol, 2008, 177: 5–8[16]Soares A S. Dorsoventral variations in dark chilling effects onphotosynthesis and stomatal function in Paspalum dilatatumleaves. J Exp Bot, 2010, 62: 687–699[17]Li P M, Cheng L, Peng T, Gao H Y. CO2 assimilation and chlorophyll fluorescence in green versus red Berberis thunbergii leaves measured with different quality irradiation. Photosynthetica, 2009, 47: 11–18 [18]Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytol, 1999, 143: 105–117[19]Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337–354[20]Thain J F. Curvature correction factors in the measurement of cell surface areas in plant tissues. J Exp Bot, 1983, 34: 87–94[21]Smith W K, Bell D T, Shepherd K A. Associations between leaf srtructure, orientation, and sunlight exposure in five western Australian communities. Am J Bot, 1998, 85: 56–62[22]Oguchi R, Hikosaka K, Hiura T. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ, 2005, 28: 916–927[23]Delucia E H, Shenoi H D, Naidu S L, Day T A. Photosynthetic symmetry of sun and shade leaves of different orientations. Oecologia, 1991, 87: 51–57[24]Soares A S, Driscoll S P, Olmos E, Harbinson J, Arrabaça M C, Foyer C H. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum. New Phytol, 2007, 177: 186–199[25]Ehleringer J R, Bjorkman O. Pubescence and Leaf spectral characteristics in a desert shrub, Encelia farinose. Oecologia (Berl.), 1978, 36: 151–162[26]Wang Y, Noguchi K, Terashima L. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Environ, 2008, 31: 1307–1316[27]Sowiński P, Szczepanik J and Minchin E H. On the mechanism of C4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses. J Exp Bot, 2008, 59: 1137–1147[28]Gorton H L, Brodersen C R, Williams W E, Vogelmann T C. Measurement of the optical properties of leaves under diffuse light. Photochem Photobiol, 2010, 86(5): 1076–1083[29]Delayney R H. Morphological and anatomical features of alfalfa leaves related to CO2 exchange. Crop Sci, 1974, 14: 444–447[30]Sun T-X(孙同兴), Zhang X(张昕), Zhang C-S(张长胜), Lin J-X(林金星), Hu Y-X(胡玉喜). Effects of doubled CO2 on the leaf morphology and structure of alfalfa. J Laiyang Agric Coll (莱阳农学院学报), 1999, 16(1): 1–5 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[3] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[4] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[5] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[6] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[7] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[8] | 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665. |
[9] | 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331. |
[10] | 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359. |
[11] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[12] | 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187. |
[13] | 吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征[J]. 作物学报, 2021, 47(5): 915-928. |
[14] | 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941. |
[15] | 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480. |
|