欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 350-359.doi: 10.3724/SP.J.1006.2013.00350

• 耕作栽培·生理生化 • 上一篇    下一篇

不同栽培方式和秸秆还田对水稻产量和营养品质的影响

袁玲1,张宣1,杨静1,杨春蕾1,曹小闯1,吴良欢1,2,*   

  1. 1 教育部环境修复与生态健康重点实验室 / 浙江大学环境与资源学院, 浙江杭州310058; 2 浙江省亚热带土壤与植物营养重点研究实验室 / 浙江大学环境与资源学院, 浙江杭州310058
  • 收稿日期:2012-06-04 修回日期:2012-10-09 出版日期:2013-02-12 网络出版日期:2012-11-14
  • 通讯作者: 吴良欢, E-mail: finm@zju.edu.cn
  • 基金资助:

    本研究由“十二五”国家水体污染控制与治理科技重大专项(2012ZX07101-012-04), 国家公益性行业(农业)科研专项(201003016)和浙江省“三农五方”科技协作计划项目(2010)资助。

Effects of Different Cultivation Methods and Rice Straw Incorporation on Grain Yield and Nutrition Quality of Rice

YUAN Ling1,ZHANG Xuan1,YANG Jing1,YANG Chun-Lei1,CAO Xiao-Chuang1,WU Liang-Huan1,2,*   

  1. 1 Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education / College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; 2 Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition / College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
  • Received:2012-06-04 Revised:2012-10-09 Published:2013-02-12 Published online:2012-11-14
  • Contact: 吴良欢, E-mail: finm@zju.edu.cn

摘要:

为阐明水稻产量和营养品质在不同栽培方式和秸秆还田条件下的表现特性, 以两优培九(籼稻)为材料, 常规水作(CFC)为对照, 通过长期定位试验(2001—2010年)研究了覆膜旱作(PFMC)、裸地旱作(NMC)和秸秆还田对水稻产量、精米中蛋白质和氨基酸、糙米中铁和锌含量的影响。2008—2010三年试验结果(平均值)表明, 与CFC相比, PFMC能显著增加水稻产量, 增产幅度达8.0%, 精米中总氨基酸含量下降3.5%, 精米中蛋白质, 糙米中铁锌含量与CFC处理差异不显著; NMC处理产量显著下降5.1%, 蛋白质、总氨基酸和铁含量分别下降4.4%、9.3%和11.9%。秸秆还田较不还田处理, CFC条件下, 产量增加了113.6 kg hm-2; NMC条件下, 产量增加142.6 kg hm-2; PFMC条件下, 产量增加522.1 kg hm-2; 三种栽培方式产量平均增加3.3%, 糙米中的铁和锌含量平均增加3.1%和6.4%, 精米中蛋白质和总氨基酸含量差异不显著。本试验结果表明, PFMC能显著提高水稻产量, 秸秆还田能显著提高水稻产量和稻米中铁、锌含量。

关键词: 覆膜旱作, 秸秆还田, 营养品质, 水稻

Abstract:

Plastic film mulching cultivation (PFMC) under non-flooded condition has been considered as a new water-saving technique in rice production, while yield decline from continuous cropping of aerobic rice is a constraint to the widespread adoption of PFMC. Rice straw incorporation has been proposed to counter this negative effect in recent decades. This study examined the effects of three cultivation methods and rice straw incorporation on rice grain yield and quality using “Liangyoupeijiu” (an indica hybrid cultivar). The three cultivation treatments were: conventional flooding cultivation (CFC); non-flooded plastic film mulching cultivation (PFMC); no mulching cultivation in non-flooded condition (NMC). Compared with that under CFC, average rice grain yield under PFMC from 2008 to 2010 was significantly improved by 8.0%, while total amino acids content was decreased by 3.5%, no obvious effect was observed on rice protein, Fe and Zn concentrations in rice; under NMC, the reduction in yield, protein, total amino acids and Fe concentrations were 5.1%, 4.4%, 9.3%, and 11.8%, respectively. With rice straw incorporation, grain yield was improved by 113.6, 142.6, and 522.1 kg ha-1 under CFC, NMC, and PFMC, respectively. Average rice grain yield, Fe and Zn contents in brown rice were significantly improved by 3.3%, 3.1%, and 6.4% with rice straw incorporation. The results of the three years showed the same trend in rice grain yield and nutrition quality. The results indicated that PFMC could improve not only grain yield, but also part of rice nutrition quality. Rice straw incorporation could significantly improved rice grain yield as well as Fe and Zn concentrations in brown rice, which would be a good method to overcome grain yield decline under long term PFMC.

Key words: Plastic film mulching cultivation, Rice straw incorporation, Nutrition quality, Rice

[1]FAO. Statistical Databases. Food and Agriculture Organization (FAO) of the United Nations, 2001



[2]White P J, Broadley M R. Biofortifying crops with essential mineral elements. Trends Plant Sci, 2005, 10: 586–593



[3]Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot, 2004, 55: 353–364



[4]Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil, 2008, 302: 1–17



[5]Cakmak I, Pfeiffer W H, McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem, 2010, 87: 10–20



[6]Zhang Z-C(张自常), Sun X-L(孙小淋), Chen T-T(陈婷婷), Liu L-J(刘立军), Yang J-C(杨建昌). Effect of non-flooded mulching cultivation on the yield and quality of rice. Acta Agron Sin (作物学报), 2010, 36(2): 285–295 (in Chinese with English abstract)



[7]Zhang Z-C(张自常), Li H-W(李鸿伟), Wang X-M(王学明), Yuan L-M(袁莉民), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Effects of non-flooded straw-mulching cultivation on grain yield and quality of direct-seeding rice. Acta Agron Sin (作物学报), 2011, 37(10): 1809–1818 (in Chinese with English abstract)



[8]Wu L H, Zhu Z R, Liang Y C, Zhang F S. Plastic film mulching cultivation: a new technology for resource saving water N fertilizer and reduced environmental pollution. In: Host W J, ed. Plant Nutrition: Food Security and Sustainability of Agro-ecosystems. Dordrecht: Kluwer Academic, 2001. pp 1024–1025



[9]Wu L H, Zhu Z R, Liang Y C, Shi W Y, Zhang L M. The development of the rice film mulching cultivation. J Zhejiang Agric Univ, 1999, 25: 41–42



[10]Peng S B, Shen K R, Wang X C, Liu J, Luo X S, Wu L H. A new rice cultivation technology: plastic film mulching. Int Rice Res Notes, 1999, 24: 9–10



[11]Liang Y C, Hu F, Zhu X L, Wang G P, Wang Y L. Mechanisms of high yield and irrigation water use efficiency of rice in plastic film mulched dry-land. Sci Agric Sin, 1999, 32: 26–32



[12]Yang J-C(杨建昌), Wang Z-Q(王志琴), Chen Y-F(陈义芳), Cai Y-X(蔡一霞), Liu L-J(刘立军), Zhu Q-S(朱庆森). Preliminary studies of grain yield and quality of dry-cultivated rice. Jiangsu Agric Res (江苏农业研究), 2000, 21(3): 1–5 (in Chinese with English abstract)



[13]Liu M(刘铭), Wu L-H(吴良欢). Study on changes of soil fertility in rain fed paddy soils with mulching plastic film. Acta Agric Zhejianggensis (浙江农业科学), 2003, 15(1): 8–12 (in Chinese with English abstract)



[14]Wu M-Y(武美燕). Study on Paddy Soil Fertility and Rice Nutrient Characteristics under Continuous Non-flooded Plastic Film Mulching. PhD Dissertation of Zhejiang University, 2004 (in Chinese with English abstract)



[15]Wang G H, Dobermann A, Witt C, Sun Q Z, Fu R X. Performance of site–specific nutrient management for irrigated rice in southeast China. Agron J, 2001, 93: 869–878



[16]Wang Z-Z(王振忠), Dong B-S(董百舒), Wu J-M(吴敬民). Effect of the straw returned into soil in rice and wheat planting area of Taihu region. J Anhui Agric Sci (安徽农业科学), 2002, 30(2): 269–271 (in Chinese with English abstract)



[17]Wang X-D(王玄德), Shi X-J(石孝均), Song G-Y(宋光煜). Effects of long-term rice straw returning on the fertility and productivity of purplish paddy soil. Plant Nutr Soil Sci (植物营养与肥料学报), 2005, 11(3): 302–307 (in Chinese with English abstract)



[18]Iwamoto M, Suzuki T, Uozumi J. Analysis of protein and amino acid content in rice flour by Near-Infrared Spectroscopy. Nippon Shokuhin Kogyo Gakkaishi, 1986, 33: 846–854



[19]Wu J G, Shi C H, Zhang X M. Estimating the amino acid composition in milled rice by near-infrared reflectance spectroscopy. Field Crops Res, 2002, 75: 1–7



[20]Fan M S, Liu X J, Jiang R F, Zhang F S, Lu S H, Zeng X Z, Christie P. Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant Soil, 2005, 277: 265–276



[21]Liu X J, Ai Y W, Zhang F S, Lu S H, Zeng X Z, Fan M S. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Nutr Cycl Agroecosyst, 2005, 71: 289–299



[22]Gao Z-W(高真伟), Wang D-M(王冬梅), Zhan G-J(展广军). Effects of plastic film mulching cultivation on rice growth. Reclaiming and Rice Cultivation (垦殖与稻作), 2001, (2): 11–13 (in Chinese with English abstract)



[23]Lu X-H(路兴花), Wu L-H(吴良欢), Pang L-J(庞林江), Li Y-S(李永山), Zhang L(张玲). Distribution of N, P, K in rice plant under a long-term located plastic film mulching cultivation. Chin J Soil Sci (土壤通报), 2010, 41(1): 145–149 (in Chinese with English abstract)



[24]Ai Y-W(艾应伟), Liu X-J(刘学军), Zhang F-S(张福锁), Mao D-R(毛达如), Zeng X-Z(曾祥忠), Lü S-H(吕世华), Pan J-R(潘家荣). Effect of different covering methods on nitrogen fertilizer use efficiency in dry-land rice. Plant Nutr Fert Sci (植物营养与肥料学报), 2003, 9(4): 416–419 (in Chinese with English abstract)



[25]Liu X J, Ai Y W, Zhang F S, Lu S H, Zeng X Z, Fan M S. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Nutr Cycl Agroecosyst, 2005, 71: 289−299



[26]Chen X-H(陈新红), Xu G-W(徐国伟), Sun H-S(孙华山). Effects of soil moisture and nitrogen nutrition during grain filling on the grain yield and quality of rice. J Yangzhou Univ (Agric & Life Sci)(扬州大学学报•农业与生命科学版), 2003, 24(3): 37–41 (in Chinese with English abstract)



[27]Hu J-C(胡继超), Jiang D(姜东), Cao W-X(曹卫星). Effect of short-term drought on leaf water potential, photosynthesis and dry matter partitioning in paddy rice. Chin J Appl Ecol (应用生态学报), 2004, 15(1): 63–67 (in Chinese with English abstract)



[28]Fan M S, Jiang R F, Liu X J. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Field Crops Res, 2005, 91: 307–318



[29]Lu X H, Wu L H, Pang L J, Li Y S, Wu J G, Shi C H, Zhang F S. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. J Sci Food Agric, 2007, 87: 334–339



[30]Dobermann A, Fairhurst T H. Rice Straw Management. Better Crops Int (spec suppl), 2002, 16: 7–11



[31]Cakmak I, Preiffer W H, McClaffererty B. Biofortification of durum wheat with zinc and iron. Cereal Chem, 2010, 87: 10–20



[32]Bughio N, Hirotaka Y, Naoko K, Hiromi N. Cloning an iron-regulated metal transporter from rice. J Exp Bot, 2002, 374: 1677–1682



[33]Ishimaru Y, Suzuki M, Tsukamoto T, Nakazono M, Kobayashi M, Wada Y, Watanable S, Matsuhashi S, Takanishi M, Nakanishi H, Mori S, Nishizawa N K. Rice plants take up iron as a Fe3+-phytosiderophore and as Fe2+. Plant J, 2006, 45: 335–346

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!