欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 520-529.doi: 10.3724/SP.J.1006.2013.00520

• 耕作栽培·生理生化 • 上一篇    下一篇

甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析

肖华贵1,2,杨焕文1,*,饶勇2,*,杨斌2,朱英3   

  1. 1 云南农业大学烟草学院,云南昆明 650201;2 贵州省油料研究所,贵州贵阳 550006;3贵州省生物技术研究所,贵州贵阳 550006
  • 收稿日期:2012-07-27 修回日期:2012-11-16 出版日期:2013-03-12 网络出版日期:2013-01-04
  • 通讯作者: 杨焕文, E-mail: mryanghuanwen@126.com, Tel: 0871-5227816; 饶勇, E-mail: ry590@21cn.com
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A104)和国家现代农业产业技术体系建设专项(CARS-13)资助。

Photosynthetic Characteristics and Chlorophyll Fluorescence Kinetic Parameters Analyses of Chlorophyll-Reduced Mutant in Brassica napus L.

XIAO Hua-Gui1,2,YANG Huan-Wen1,*,RAO Yong2,*,YANG Bin2,ZHU Ying3   

  1. 1 College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China; 2 Guizhou Institute of Oil Crops, Guiyang 550006, China; 3 Guizhou Institute of Biological Technology, Guiyang 550006, China
  • Received:2012-07-27 Revised:2012-11-16 Published:2013-03-12 Published online:2013-01-04
  • Contact: 杨焕文, E-mail: mryanghuanwen@126.com, Tel: 0871-5227816; 饶勇, E-mail: ry590@21cn.com

摘要:

调查油菜自发黄化突变体(NY)、野生型(NG)及其正反交后代材料(F1rF1)的光合色素含量、光合特性、叶绿素荧光参数及农艺性状,分析五叶期各参数的变化规律。表明,突变体叶绿素a、叶绿素b、类胡萝卜素和总叶绿素均大幅减少,其中叶绿素b减幅最大;净光合速率显著降低,胞间CO2浓度升高,但气孔导度与野生型等相当,表明光合速率不受气孔限制;光补偿点和光饱和点升高,暗呼吸速率与野生型等相当,表观量子效率和光补偿点处量子效率显著降低;CO2补偿点、光呼吸速率和羧化效率均显著降低,CO2饱和点则显著升高;突变体的荧光参数,包括FoFmFv/FmFv'/Fm'ΦPSIIqpNPQETR均显著降低,说明光合色素含量降低导致PSII反应中心捕光能力弱和光化学转化效率低,使叶片光合速率降低。突变体的黄化持续时间较长,对生长发育产生影响较大,单株籽粒产量只有野生型的57.09%,但与正常材料组配F1的光合特性和农艺性状均能恢复到正常水平。

关键词: 甘蓝型油菜, 黄化突变体, 光合色素含量, 光合特性, 叶绿素荧光动力学参数

Abstract:

We investigatedthe photosynthetic pigment contents, photosynthetic characteristics, chlorophyll fluorescence kinetic parameters and agronomic traits at five-leaf stage of the chlorophyll-reduced mutant (NY), wild-type (NG), F1 and rF1 of their combinations (reciprocal cross). The results showed that the chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in the mutant were significantly reduced compared with there in other materials, expecially for chlorophyll b. The net photosynthetic rate (Pn) of the mutant was significantly lower than that of wild-type and their F1 and rF1. Relatively high intercellular CO2 concentration (Ci) and an equivalent stomatal conductance (Gs) in the mutant indicated that stomatal factor was not the limiting factor of the photosynthetic rate. The mutant had higher light compensation point (LCP) and light saturation point (LSP), and its dark respiration rate (Rd) was equal to that of wild-type, whereas apparent quantum yield (AQY) and quantum yield at light compensation point (φc) in the mutant were significantly decresed. The CO2 compensation point (CCP), rate of photorespiration (Rp) and carboxylation efficiency (CE) of the mutant NY were significantly lower than those of the wild-type NG and their combinations of NY×NG and NG×NY, but the mutant had higher CO2 saturation point (CSP). The fluorescence parameters in the mutant, including Fo, Fm, Fv/Fm, Fv'/Fm', ΦPSII, qp, NPQ, and ETR were significantly reduced. Lower photosynthetic pigment content may be the main reason for low leaf photosynthetic rate which directly leads to the lower light-harvesting capacity and photochemical conversion efficiencies of the PSII reaction center. Moreover, lasting etiolation of leaves in the mutant had a greater impact on its growth and development, but the photosynthetic characteristics and agronomic traits were restored to normal level in F1 of the cross between the mutant and the normal parent.

Key words: Brassica napus L., Chlorophyll-reduced mutant, Photosynthetic pigment content, Photosynthetic characteristics, Chlorophyll fluorescence kinetic parameters

[1]Beale S I. Green genes gleaned. Trend Plant Sci, 2005, 10: 309–312



[2]He B(何冰), Liu L-L(刘玲珑), Zhang W-W(张文伟), Wan J-M(万建民). Plant leaf color mutants. Plant Physiol Commun (植物生理学通讯), 2006, 42(1): 1–9 (in Chinese with English abstract)



[3]Robert M L, Jose M A, Joseph R E. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906



[4]Stern D B, Hanson M R, Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci, 2004, 9: 293–301



[5]Leverenz J W, Öquist G, Wingsle G. Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light. Physiol Plant, 1992, 85: 495–502



[6]Mochizuki N, Brusslan J A, Larkin R, Nagatani A, Chory J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA, 2001, 98: 2053–2058



[7]Li X-H(李向辉). Plant Genetic Manipulation (植物遗传操作). Beijing: Higher Education Press, 1994. pp 96–130 (in Chinese)



[8]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986–1988



[9]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248–1257



[10]Reyes-Arribas T, Barrett J E, Huber D J, Nell T A, Clark D G. Leaf senescence in a non-yellowing cultivar of chrysanthemum (Dendranthema grandiflora). Physiol Plant, 2001, 111: 540–544



[11]Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed, 2000, 119: 131–135



[12]Chen S-F(陈善福), Shen S-Q(沈圣泉), Wu D-X(吴殿星), Xia Y-W(夏英武), Shu Q-Y(舒庆尧). Physical and chemical quality characters and combining ability of leaf color mutants of rice. Chin J Rice Sci (中国水稻科学), 2001, 15(4): 261–264 (in Chinese with English abstract)



[13]Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet, 1997, 31: 61–89



[14]Lokstein H, Härtel H, Hoffmann P, Renger G. Comparison of chlorophyll fluorescence quenching in leaves of wild-type with a chlorophyll-b-less mutant of barley (Hordeum vulgare L.). J Photochem Photobiol B: Biology, 1993, 19: 217–225



[15]Xu D Q, Chen X M, Zhang L X, Wang R F, Hesketh J D. Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient soybean mutant. Photosynthetica, 1994, 29: 103–112



[16]Cao L(曹莉), Wang H(王辉), Sun D-J(孙道杰), Feng Y(冯毅). Photosynthesis and chlorophyll fluorescence characters of xantha wheat mutants. Acta Bot Boreali-Occident Sin (西北植物学报), 2006, 26(10): 2083–2087 (in Chinese with English abstract)



[17]Tan X-X(谭新星), Xu D-Q(许大全). Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient mutant of barly. Acta Phytophysiol Sin (植物生理学报), 1996, 22(1): 51–57 (in Chinese with English abstract)



[18]Guo S-W(郭士伟), Zhang Y-H(张云华), Jin Y-Q(金永庆), Shi S-Y(师素云), Tan X-Y(谭秀云), Liu A-M(刘蔼民). Characterization of chlorophyll fluorescence in a mutant of Brassica chinensis L. with Xantha seedling leaves. Acta Agron Sin (作物学报), 2003, 29(6): 958–960 (in Chinese with English abstract)



[19]Lü D-H(吕典华), Zong X-F(宗学凤), Wang S-G(王三根), Ling Y-H(凌英华), Sang X-C(桑贤春), He G-H(何光华). Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin (作物学报), 2009, 35(12): 2304–2308 (in Chinese with English abstract)



[20]Ou L-J(欧立军). High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2011, 37(10): 1860–1867 (in Chinese with English abstract)



[21]Zhang Z-B(张泽斌), Deng W-H(邓文辉), Ou-Yang W-Q(欧阳文秋), Zhou R-F(周荣富), Zhao Y(赵云). Photosynthetic capabilities and chlorophyll fluorescence of a chlorophyll reduced seedling mutant Cr3529, Brassica napus L. J Sichuan Univ (Nat Sci Edn) (四川大学学报•自然科学版), 2009, 46(4): 1181–1187 (in Chinese with English abstract)



[22]Zhao Y, Di L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structural differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880



[23]Simpson D J, Machold O, Høyer-Hansen G,Wettstein D Von.Chlorina mutants of barley (Hordeum vulgare L.). Carlsberg Res Commun, 1985, 50: 223–238



[24]Zhou X S, Shen S Q, Wu D X, Sun J W, Shu Q Y. Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice. Field Crops Res, 2006, 96: 71–79



[25]Osborne B A, Raven J A. Light absorption by plants and its implications for photosynthesis. Biol Rev, 1986, 61: 1–60



[26]Dai R-C(戴日春), Xue J-M(薛建明). Study on the chlorophyll content of a new yellow-green seedling mutant Zhe 12-12N in upland cotton (Gossypium hirsutun L.). J Zhejiang Agric Univ (浙江农业大学学报), 1995, 21(2): 199–202 (in Chinese with English abstract)



[27]Hu Z(胡忠), Liang H-X(梁汉兴), Peng L-P(彭丽萍). Photosynthetic characteristics of a yellow-green rice mutant. Acta Bot Yunnanica (云南植物研究), 1981, 3(4): 449–456 (in Chinese with English abstract)



[28]Jia Y-F(贾玉峰), Xu Y-K(许耀奎), Wu X-K(邬信康). Genetic analysis and chloroplast ultrastructure of green-yellow mutant in spring wheat. J Jilin Agric Univ (吉林农业大学学报), l992, 14(1): 1–5 (in Chinese with English abstract)



[29]Dong Z(董遵), Liu J-Y(刘敬阳), Ma H-M(马红梅), Xu C-K(许才康), Sun H(孙华), Zhang J-D(张建栋). Chlorophyll contents and chloroplast ultrastructure of chlorophyll deficient mutant in B. napus. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(3): 27–29 (in Chinese with English abstract)



[30]Li W(李玮), Yu C-Y(于澄宇), Hu S-W(胡胜武). Primary investigation on a chlorosis mutant in Brassica juncea L. J Northwest A&F Univ (Nat Sci Edn) (西北农林科技大学学报•自然科学版), 2007, 35(9) : 79–82 (in Chinese with English abstract)



[31]Lichtenthaler H K. Chlorophyll and carotenoids: pigments of photosynthetic biomembrances. Methods Enzymol, 1987, 148: 350–382



[32]Ye S-H(叶尚红). Plant Physiology and Biochemistry Experimental Course (植物生理生化实验教程), 2nd Edn. Kunming: Yunnan Scientific and Technical Press, 2004. pp 124–127 (in Chinese)



[33]Ye Z P. A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa. Photosynthetica, 2007, 45: 637–640



[34]Ye Z-P(叶子飘). A review on modeling of responses of photosynthesis to light and CO2. Chin J Plant Ecol (植物生态学报), 2010, 34(6): 727–740 (in Chinese with English abstract)



[35]Ye Z-P(叶子飘), Yu Q(于强). Comparison of photosynthetic response to intercellular CO2 and air CO2. Chin J Ecol (生态学杂志), 2009, 28(11): 2233–2238 (in Chinese with English abstract)



[36]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87–92



[37]Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Press, 2002. pp 86–96(in Chinese)



[38]Rohacek K, Bartak M. Technique of the modulated chlorophyll fluorescence: basic concepts, usefu1 parameters, and some applicadons. Photosynthetlea, 1999, 37: 339–363



[39]Zhao H-J(赵会杰), Zou Q(邹琦), Yu Z-W(于振文). Chlorophyll fluorescence analysis technique and its application to photosynthesis of plant. J Henan Agric Univ (河南农业大学学报), 2000, 34(3): 248–251 (in Chinese with English abstract)



[40]Demmig-Adams B, Adams W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci, 1996, 1: 21–26



[41]Peng C-L(彭长连), Lin G-Z(林桂珠). The feature of chlorophyll fluorescence quenching in xanthophyll-deficient mutants of Arabidopsis thaliana. Prog Biochem Biophys (生物化学与生物物理进展), 2003, 30(2): 251–256 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[4] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!