作物学报 ›› 2013, Vol. 39 ›› Issue (03): 520-529.doi: 10.3724/SP.J.1006.2013.00520
肖华贵1,2,杨焕文1,*,饶勇2,*,杨斌2,朱英3
XIAO Hua-Gui1,2,YANG Huan-Wen1,*,RAO Yong2,*,YANG Bin2,ZHU Ying3
摘要:
[1]Beale S I. Green genes gleaned. Trend Plant Sci, 2005, 10: 309–312[2]He B(何冰), Liu L-L(刘玲珑), Zhang W-W(张文伟), Wan J-M(万建民). Plant leaf color mutants. Plant Physiol Commun (植物生理学通讯), 2006, 42(1): 1–9 (in Chinese with English abstract)[3]Robert M L, Jose M A, Joseph R E. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906[4]Stern D B, Hanson M R, Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci, 2004, 9: 293–301[5]Leverenz J W, Öquist G, Wingsle G. Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light. Physiol Plant, 1992, 85: 495–502[6]Mochizuki N, Brusslan J A, Larkin R, Nagatani A, Chory J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA, 2001, 98: 2053–2058[7]Li X-H(李向辉). Plant Genetic Manipulation (植物遗传操作). Beijing: Higher Education Press, 1994. pp 96–130 (in Chinese)[8]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986–1988[9]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248–1257[10]Reyes-Arribas T, Barrett J E, Huber D J, Nell T A, Clark D G. Leaf senescence in a non-yellowing cultivar of chrysanthemum (Dendranthema grandiflora). Physiol Plant, 2001, 111: 540–544[11]Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed, 2000, 119: 131–135[12]Chen S-F(陈善福), Shen S-Q(沈圣泉), Wu D-X(吴殿星), Xia Y-W(夏英武), Shu Q-Y(舒庆尧). Physical and chemical quality characters and combining ability of leaf color mutants of rice. Chin J Rice Sci (中国水稻科学), 2001, 15(4): 261–264 (in Chinese with English abstract)[13]Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet, 1997, 31: 61–89[14]Lokstein H, Härtel H, Hoffmann P, Renger G. Comparison of chlorophyll fluorescence quenching in leaves of wild-type with a chlorophyll-b-less mutant of barley (Hordeum vulgare L.). J Photochem Photobiol B: Biology, 1993, 19: 217–225[15]Xu D Q, Chen X M, Zhang L X, Wang R F, Hesketh J D. Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient soybean mutant. Photosynthetica, 1994, 29: 103–112 [16]Cao L(曹莉), Wang H(王辉), Sun D-J(孙道杰), Feng Y(冯毅). Photosynthesis and chlorophyll fluorescence characters of xantha wheat mutants. Acta Bot Boreali-Occident Sin (西北植物学报), 2006, 26(10): 2083–2087 (in Chinese with English abstract)[17]Tan X-X(谭新星), Xu D-Q(许大全). Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient mutant of barly. Acta Phytophysiol Sin (植物生理学报), 1996, 22(1): 51–57 (in Chinese with English abstract) [18]Guo S-W(郭士伟), Zhang Y-H(张云华), Jin Y-Q(金永庆), Shi S-Y(师素云), Tan X-Y(谭秀云), Liu A-M(刘蔼民). Characterization of chlorophyll fluorescence in a mutant of Brassica chinensis L. with Xantha seedling leaves. Acta Agron Sin (作物学报), 2003, 29(6): 958–960 (in Chinese with English abstract)[19]Lü D-H(吕典华), Zong X-F(宗学凤), Wang S-G(王三根), Ling Y-H(凌英华), Sang X-C(桑贤春), He G-H(何光华). Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin (作物学报), 2009, 35(12): 2304–2308 (in Chinese with English abstract)[20]Ou L-J(欧立军). High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2011, 37(10): 1860–1867 (in Chinese with English abstract)[21]Zhang Z-B(张泽斌), Deng W-H(邓文辉), Ou-Yang W-Q(欧阳文秋), Zhou R-F(周荣富), Zhao Y(赵云). Photosynthetic capabilities and chlorophyll fluorescence of a chlorophyll reduced seedling mutant Cr3529, Brassica napus L. J Sichuan Univ (Nat Sci Edn) (四川大学学报•自然科学版), 2009, 46(4): 1181–1187 (in Chinese with English abstract)[22]Zhao Y, Di L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structural differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880[23]Simpson D J, Machold O, Høyer-Hansen G,Wettstein D Von.Chlorina mutants of barley (Hordeum vulgare L.). Carlsberg Res Commun, 1985, 50: 223–238[24]Zhou X S, Shen S Q, Wu D X, Sun J W, Shu Q Y. Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice. Field Crops Res, 2006, 96: 71–79[25]Osborne B A, Raven J A. Light absorption by plants and its implications for photosynthesis. Biol Rev, 1986, 61: 1–60[26]Dai R-C(戴日春), Xue J-M(薛建明). Study on the chlorophyll content of a new yellow-green seedling mutant Zhe 12-12N in upland cotton (Gossypium hirsutun L.). J Zhejiang Agric Univ (浙江农业大学学报), 1995, 21(2): 199–202 (in Chinese with English abstract)[27]Hu Z(胡忠), Liang H-X(梁汉兴), Peng L-P(彭丽萍). Photosynthetic characteristics of a yellow-green rice mutant. Acta Bot Yunnanica (云南植物研究), 1981, 3(4): 449–456 (in Chinese with English abstract)[28]Jia Y-F(贾玉峰), Xu Y-K(许耀奎), Wu X-K(邬信康). Genetic analysis and chloroplast ultrastructure of green-yellow mutant in spring wheat. J Jilin Agric Univ (吉林农业大学学报), l992, 14(1): 1–5 (in Chinese with English abstract)[29]Dong Z(董遵), Liu J-Y(刘敬阳), Ma H-M(马红梅), Xu C-K(许才康), Sun H(孙华), Zhang J-D(张建栋). Chlorophyll contents and chloroplast ultrastructure of chlorophyll deficient mutant in B. napus. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(3): 27–29 (in Chinese with English abstract)[30]Li W(李玮), Yu C-Y(于澄宇), Hu S-W(胡胜武). Primary investigation on a chlorosis mutant in Brassica juncea L. J Northwest A&F Univ (Nat Sci Edn) (西北农林科技大学学报•自然科学版), 2007, 35(9) : 79–82 (in Chinese with English abstract)[31]Lichtenthaler H K. Chlorophyll and carotenoids: pigments of photosynthetic biomembrances. Methods Enzymol, 1987, 148: 350–382[32]Ye S-H(叶尚红). Plant Physiology and Biochemistry Experimental Course (植物生理生化实验教程), 2nd Edn. Kunming: Yunnan Scientific and Technical Press, 2004. pp 124–127 (in Chinese)[33]Ye Z P. A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa. Photosynthetica, 2007, 45: 637–640[34]Ye Z-P(叶子飘). A review on modeling of responses of photosynthesis to light and CO2. Chin J Plant Ecol (植物生态学报), 2010, 34(6): 727–740 (in Chinese with English abstract)[35]Ye Z-P(叶子飘), Yu Q(于强). Comparison of photosynthetic response to intercellular CO2 and air CO2. Chin J Ecol (生态学杂志), 2009, 28(11): 2233–2238 (in Chinese with English abstract)[36]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87–92[37]Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Press, 2002. pp 86–96(in Chinese)[38]Rohacek K, Bartak M. Technique of the modulated chlorophyll fluorescence: basic concepts, usefu1 parameters, and some applicadons. Photosynthetlea, 1999, 37: 339–363[39]Zhao H-J(赵会杰), Zou Q(邹琦), Yu Z-W(于振文). Chlorophyll fluorescence analysis technique and its application to photosynthesis of plant. J Henan Agric Univ (河南农业大学学报), 2000, 34(3): 248–251 (in Chinese with English abstract)[40]Demmig-Adams B, Adams W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci, 1996, 1: 21–26[41]Peng C-L(彭长连), Lin G-Z(林桂珠). The feature of chlorophyll fluorescence quenching in xanthophyll-deficient mutants of Arabidopsis thaliana. Prog Biochem Biophys (生物化学与生物物理进展), 2003, 30(2): 251–256 (in Chinese with English abstract) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[4] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|