作物学报 ›› 2013, Vol. 39 ›› Issue (03): 530-536.doi: 10.3724/SP.J.1006.2013.00530
杜伟莉,高杰,胡富亮,郭德林,张改生*,张仁和*,薛吉全
DU Wei-Li,GAO Jie,HU Fu-Liang,GUO De-Lin,ZHANG Gai-Sheng*,ZHANG Ren-He*,XUE Ji-Quan
摘要:
[1]Campos H, Cooper M, Habben J E, Edmeades G O, Schussler J R. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004, 90: 19–34[2]Zhang R-H(张仁和), Xue J-Q(薛吉全), Pu J(浦军), Zhao B(赵兵), Zhang X-H(张兴华), Zhang Y-J(郑友军), Bu L-D(卜令铎). Influence of drought stress on plant growth and photosynthetic traits in maize seedlings. Acta Agron Sin (作物学报), 2011, 37(3): 521−528 (in Chinese with English abstract)[3]Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Publishers, 2002. pp 821–834 (in Chinese)[4]Erice G, Louahlia S, Irigoyen J J, Díaz M S, Alami I T, Avice J C. Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environ Exp Bot, 2011, 72: 123−130[5]Pinheiro C, Chaves M M. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot, 2011, 62: 869–882[6]Nielsen D C, Vigil M F, Benjamin J G. The variable response of dry land corn yield to soil water content at planting. Agr Water Manage, 2009, 96: 330–336[7]Li R H, Guo P G, Baum M, Grando S, Ceccarelli S. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China, 2006, 5: 751−757[8]Jiang G-M(蒋高明). Plant Physioecology (植物生理生态学). Beijing: Higher Education Press, 2004. pp 24–28 (in Chinese)[9]Ding L, Wang K J, Jiang G M, Li Y G, Jiang C D, Liu M Z, Niu S L, Peng Y. Diurnal variation of gas exchange, chlorophyll fluorescence and xanthophylls cycle components of maize hybrids released in different years. Photosynthetica, 2006, 44: 26–31[10]Levitt J. Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses, 2nd edn. New York: Academic Press, 1980. pp 25–280[11]Lin Y-C(林叶春), Zeng Z-H(曾昭海), Ren C-Z(任长忠), Li Z-J(李志坚), Guo L-C(郭来春), Yang X-C(杨学超), Wang C-L(王春龙), Qian X(钱欣), Hu Y-G(胡跃高). Effects of partial root zone irrigation on leaf photosynthetic curves and chlorophyll fluorescence parameters in naked oat. Acta Agron Sin (作物学报), 2012, 38(6): 1062–1072 (in Chinese with English abstract)[12]Shao H B, Liang Z S, Shao M A. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids and Surfaces B: Biointerfaces, 2006, 47: 132–139[13]Babita M, Maheswari M, Rao L M, Shanker A K, Rao D G. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot, 2010, 69: 243–249[14]Aroca R, Irigoyen J J, Sánchez-díaz M. Drought enhances maize chilling tolerance: II. photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant, 2003, 117: 540–549[15]Ephrath J E. The effects of drought stress on leaf elongation, photosynthesis and transpiration rate in maize leaves. Photosynthetica, 1991, 25: 607–619[16]Yousifi N, Slama I, Ghnaya T, Savoure A., Abdelly C. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. Comptes Rendus Biologies, 2010, 333: 205–213[17]Baker N R, Rosenqvist E. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621[18]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res, 1986, 10: 51–62[19]Zhang R-H(张仁和), Ma G-S(马国胜), Bu L-D(卜令铎), Shi J-T(史俊通) Xue J-Q(薛吉全). Appraisement and comprehensive evaluation of different genotype maize cultivars for drought resistance. Seed (种子), 2009, 28(10): 91–93 (in Chinese with English abstract)[20]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982, 33: 317–345[21]Herrick J D, Thomas R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweet gum (Liquidambar styraciflua) in a forest ecosystem. Tree Physiol, 1999, 19: 779–786[22]Ethier G J, Livingston N J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ, 2004, 27: 137–153[23]Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264[24]Gao J-F(高俊凤). Plants Physiology Experimentation Guidance (植物生理学实验技术). Xi’an: The World Press, 2000. pp 101–103 (in Chinese)[25]Zhang S-R(张守仁). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot (植物学通报), 1999, 16(4): 444–448 (in Chinese with English abstract).[26]Li G(李耕), Gao H-Y(高辉远), Zhao B(赵斌), Dong S-T(董树亭), Zhang J-W(张吉旺), Yang J-S(杨吉顺), Wang J-F(王敬锋), Liu P(刘鹏). Effects of drought stress on activity of photosynthesis in leaves of maize at grain filling stage. Acta Agron Sin (作物学报), 2009, 35(10): 1916–1922 (in Chinese with English abstract)[27]Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. South Afr J Bot, 2009, 75: 34–42[28]Massacci A, Nabiv S M, Pietrosanti L, Nematov S K, Chernikova T N, Thor K, Leipner J. Response of photosynthesis apparatus of cotton to the onset of drought stress under field conditions by gas change analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 2008, 46: 189–195[29]Mishra K B, Iannacone R, Petrozza A, Mishra A, Armentano N, Vecchia G L, Trtílek M, Cellini F, Nedbal L. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci, 2012, 182: 79−86[30]Bai L P, Sui F G, Ge T D, Sun Z H, Lu Y Y, Zhou G S. Effect of Soil drought Stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 2006, 16: 326–332[31]Campos K F, Carvalho K, Souza F S, Marur C J, Pereira L F, Vieira L G. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot, 2011, 72: 242−250 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[10] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[11] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[12] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[13] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[14] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[15] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
|