欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 609-616.doi: 10.3724/SP.J.1006.2013.00609

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆粒形性状QTL的精细定位

牛远,谢芳腾,布素红,谢尚潜,韩世凤,耿青春,刘兵,章元明*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2012-09-10 修回日期:2012-12-11 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 通讯作者: 章元明, E-mail: soyzhang@njau.edu.cn, soyzhang@hotmail.com
  • 基金资助:

    本研究由教育部新世纪优秀人才支持计划项目(NECT-05-0489), 江苏省自然科学基金项目(BK2008335)和中央高校基本科研业务费专项资金创新团队项目(KYT201002)资助。

Fine Mapping of Quantitative Traits Loci for Seed Shape Traits in Soybean

NIU Yuan,XIE Fang-Teng,BU Shu-Hong,XIE Shang-Qian,HAN Shi-Feng,GENG Qing-Chun,LIU Bing,ZHANG Yuan-Ming*   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2012-09-10 Revised:2012-12-11 Published:2013-04-12 Published online:2013-01-28
  • Contact: 章元明, E-mail: soyzhang@njau.edu.cn, soyzhang@hotmail.com

摘要:

在溧水中子黄豆×南农493-1衍生的504F2:6家系中选择Satt331~Satt592目标区间7个杂合单株和168个重组单株,衍生成356RHL-F2个体(群体I)168个重组体家系(群体II)。群体II来自142F2:6家系,若每个F2:6家系只保留1个重组家系则构成群体III。采用lasso和复合区间作图(CIM)法检测3个群体粒形性状2种指标的QTL。结果表明, lasso法检测到的粒长关联标记是O19S21/Satt331,而CIM检测到的QTL区间是S21~S22O23~O19lasso法检测到的粒宽关联标记是O19/O21,而CIM检测到的QTL区间是O23~O19/O19~O21;长宽比与S21~S22关联是由于粒长QTL引起的,与O23~O19 /O19~O21关联是由于粒长和粒宽QTL引起的。将原Satt331~Satt592目标区间的粒长QTL剖分为与标记S21~S22O23~O19/O19~O21关联的2个多效性QTL。根据大豆基因注释数据库,Glyma10g35240Glyma10g34980可能是控制粒形性状发育的候选基因。

关键词: 大豆, 粒形, 数量性状基因座, 精细定位, 候选基因

Abstract:

Based on the target interval region of SSR markers Satt331–Satt592, we constructed 356 RHL-F2 individuals (population I) and 168 recombinant families (population II) derived from 504 F2:6 families of the direct and reciprocal crosses of Lishuizhongzihuang with Nannong 493-1 to fine map quantitative traits loci (QTLs) for seed length (SL), width (SW) and length-to-width (SLW) ratio in soybean using composite interval mapping (CIM) and lasso approaches. Among 168 recombinant families, only one recombinant individual was selected from a same F2:6 family so that 142 recombinant families were constructed as population III. Response variable for QTL analysis was as original observation, and the value corrected by the associated marker information. As a result, markers associated with SL were O19 and S21/Satt331 from lasso method and S21–S22 and O23–O19 from CIM method; marker associated with SW was O19/O21 from lasso method and O23–O19/O19–O21 from CIM method; and the QTL associated with markers S21–S22 for SLW was derived from QTL for SL, and the QTL with markers O23–O19/O19–O21 for SLW was derived from QTLs for SL and SW. This indicates that QTL associated with markers Satt331–Satt592 in our study was further partitioned into two pleiotropic QTLs, which were associated with markers S21–S22 and markers O23–O19/O19–O21. According to the annotation project database, Glyma10g35240 and Glyma10g34980 might be candidate genes for seed shape traits.

Key words: Soybean, Seed shape trait, Quantitative trait locus, Fine mapping, Candidate gene

[1]Wilson D O. Storage of orthodox seeds. In: Basra A S ed. Seed Quality: Basic Mechanisms, Agricultural Implications. New York: Food Products Press, 1995. pp 173–2081



[2]Yano M. Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol, 2001, 4: 130–135



[3]Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit. Science, 2000, 289: 85–88



[4]Liu J, Van Eck J, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA, 2002, 99: 13302–13306



[5]Van der Knaap E, Tanksley S D. Identi?cation and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet, 2001, 103: 353–358



[6]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171



[7]Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182: 1323–1334



[8]Mao H L, Sun S Y, Yao J L, Wang C, Yu S, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579–19584



[9]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630



[10]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028



[11]Wan X Y, Weng J F, Zhai H Q, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hot spot region on chromosome 5. Genetics, 2008, 179: 2239–2252



[12]Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Thierry B, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18: 3252–3274



[13]Monna L, Lin H X, Kojima S. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b controlling heading date in rice. Theor Appl Genet, 2002, 104: 772–778



[14]Thomson M J, Edwards J D, Septiningsih E M, Harrington S, McCouch S R. Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics, 2006, 172: 2501–2514



[15]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767



[16]Xu Y, Li H N, Li G J, Wang X, Cheng L G, Zhang Y M. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theor Appl Genet, 2011, 122: 581–594



[17]Salas P, Oyarzo-Llaipen J C, Wang D, Chase K, Mansur L. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet, 2006, 113: 1459–1466



[18]Li C-D(李灿东), Jiang H-W(蒋洪蔚), Zhang W-B(张闻博), Qiu P-C(邱鹏程), Liu C-Y(刘春燕), Li W-F(李文福), Gao Y-L(高运来), Chen Q-S(陈庆山), Hu G-H(胡国华). QTL analysis of seed and pod traits in soybean. Mol Plant Breed (分子植物育种), 2008, 6(6): 1091–1100 (in Chinese with English abstract)



[19]Liang H-Z(梁慧珍), Wang S-F(王树峰), Yu Y-L(余永亮), Wang T-F(王庭峰), Gong P-T(巩鹏涛), Fang X-J(方宣钧), Liu X-Y(刘学义), Zhao S-J(赵双进), Zhang M-C(张孟臣), Li W-D(李卫东). Mapping quantitative trait loci for six seed shape traits in soybean. Henan Agric Sci (河南农业科学), 2008, 45: 54–60 (in Chinese)



[20]Cheng L-G(程利国), Li G-J(李广军), Liu Y-Q(刘玉芹), Li H-N(李河南), Zhang Y-M(章元明). Genetic analysis of resistance of soybean (Glycine max (L.) Merr.) to soybean mosaic virus strain Sa. J Nanjing Agric Univ (南京农业大学学报), 2009, 32(4): 13–17 (in Chinese with English abstract )



[21]Wei S-P(魏世平), Liu X-F(刘晓芬), Yang S-X(杨胜先), Lü H-Y(吕海燕), Niu Y(牛远), Zhang Y-M(章元明). Comparison of various clustering methods for population structure in Chinese cultivated soybean (Glycine max(L.) Merr. ) J Nanjing Agric Univ (南京农业大学学报), 2011, 34(2): 13–17 (in Chinese with English abstract)



[22]Xu S. An expectation-maximization algorithm for the lasso estimation of quantitative trait locus effects. Heredity, 2010, 105: 483–494



[23]Andaya V C, Tai T H. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet, 2006, 113: 467–475



[24]Yamanaka N, Watanabe S, Toda K, Hayashi M, Huchigami H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet, 2005, 110: 634–639



[25]Tuinstra M R. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet, 1997, 95: 1005–1011



[26]He R(何冉), Guan R-X(关荣霞), Liu Z-X(刘章雄), Zhu X-L(朱晓丽), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Mapping the qBN-c1-1 locus to LG C1 for soybean branching using residual heterozygous lines derived from a segregation population. Sci Agric Sin (中国农业科学), 2009, 42(4): 1152–1157 (in Chinese with English abstract)



[27]Wu J-R(吴季荣). Fine mapping and candidate gene analysis of a QTL controlling hull silicon content in rice. PhD Dissertation of Chinese Academy of Agriculture Sciences, 2009 (in Chinese with English abstract)



[28]Fan Y-Y(樊叶杨). Fine mapping and genetic dissection of QTL for yield traits on the short arm of rice chromosome 6. Ph D Dissertation of Chinese Academy of Agriculture Sciences, 2010 (in Chinese with English abstract)



[29]Wen J, Lease K A, Walker J C. DVL, a novel class of small polypeptides: over expression alters Arabidopsis development. Plant J, 2004, 37: 668–677



[30]Orsi C H, Tanksley S D. Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genet, 2009, 5(l): e1000347



[31]Koike M, Takezawa D, Arakawa K, Yoshida S. Accumulation of 19-kDa plasma membrane polypeptide during induction of freezing tolerance in wheat suspension-cultured cells by abscisic acid. Plant Cell Physiol, 1997, 38: 707–716

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[8] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!