欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 767-774.doi: 10.3724/SP.J.1006.2013.00767

• 综述 • 上一篇    下一篇

水稻叶片形态建成分子调控机制研究进展

徐静1,2,王莉1,2,钱前1,*,张光恒1,*   

  1. 1 中国水稻研究所 / 水稻生物学国家重点实验室, 浙江杭州 310006;2 中国农科院研究生院,北京 100081
  • 收稿日期:2012-11-02 修回日期:2013-01-16 出版日期:2013-05-12 网络出版日期:2013-02-19
  • 通讯作者: 张光恒, E-mail: zhangguangheng@126.com; 钱前, E-mail: qianqian188@hotmail.com
  • 基金资助:

    本研究由国家自然科学基金项目(30970171), 国家转基因生物新品种培育重大专项(2009ZX08009-125B)和浙江省杰出青年基金资助项目(R3100100)资助。

Research Advance in Molecule Regulation Mechanism of Leaf Morphogenesis in Rice (Oryza sativa L.)

XU Jing1,2, WANG Li1,2, QIAN Qian1,*,ZHANG Guang-Heng1,*   

  1. 1 State Key Laboratory of Rice Biology / China National Rice Research Institute, Hangzhou 310006, China; 2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-11-02 Revised:2013-01-16 Published:2013-05-12 Published online:2013-02-19
  • Contact: 张光恒, E-mail: zhangguangheng@126.com; 钱前, E-mail: qianqian188@hotmail.com

摘要:

叶片形态是水稻理想株型的重要组成部分,是当前水稻高产育种关注的重点。本文通过对已克隆多个叶形相关调控基因综述了水稻叶片形态(叶片卷曲度倾角、披散程度以及叶片宽度)建成的分子遗传学研究进展。综合分析认为,水稻叶片的卷曲主要是通过卷叶基因调控叶片近轴/远轴间的发育、泡状细胞的发育及其膨胀和渗透压、厚壁组织的形成以及叶片角质层的发育等来实现。影响植株空间伸展姿态的叶倾角主要通过叶角基因调控油菜素内酯的信号传导来影响叶枕细胞的生长发育;唯一被克隆的影响叶片披垂度的披叶基因DL1是通过控制叶片中脉发育而改变叶片形态的;而窄叶基因则主要通过调控生长素的合成与极性运输、维管组织的发育和分布,影响叶片维管束数目及宽度。但到目前为止,所有已克隆的叶形调控基因间相互调控关系的研究还不够深入,还不能完整清晰地勾勒水稻叶形建成和发育的分子调控网络。因此,在已有的研究基础上更深入地探索水稻叶片形态建成的分子调控机制,对进一步构建相关的调控网络,塑造水稻理想株型具有重要意义。

关键词: 水稻, 叶片形态, 基因, 分子机制

Abstract:

Rice leaf morphosis is one of important components in the design of ideal plant architecture, and is the main focus in high-yield breeding of rice. The paper expounds the advance in the molecular genetics research of rice leaf morphosis (including leaf rolling, leaf angle, leaf drooping, and leaf width) by analyzing the leaf shape regulating genes that have been cloned. Comprehensive analysis reveals that the leaf rolling is controlled by related genes that regulate the development of leaf along the adaxial-abaxial axis, the development of bulliform cells, osmotic pressure or turgidity in bulliform cells, the formation of sclerenchymatous cells and the development of cuticle. Leaf inclination, which affects the plant space extension posture, is regulated by the development of phyllula which is controlled by genes conferring the biosynthesis or signaling of phytohormone brassinosteroids (BRs). The only cloned drooping leaf gene controlls the leaf shape by influencing midrib formation. Narrow leaf genes regulate the leaf width through controlling the synthesis of auxin and its polar transport,and the development and distribution of vascular tissues. However, the study on the relationship between regulation roles of these cloned leaf shape genes. is not profound enough to draw an outline of molecular regulation network fort rice leaf development and morphosis completely and clearly. Therefore, on the basis of current research findings, it is of great significance to further explore the rice leaf molecular regulation mechanism for establishing related regulation network and shaping ideal rice plant architecture.

Key words: Rice (Oryza sativa L.), Leaf morphology, Gene, Molecular mechanism

[1]Yan S(严松), Yan C-J(严长杰), Gu M-H(顾铭洪). Molecular mechanism of leaf development. Hereditas (Beijing)(遗传), 2008, 30(9): 1127–1135 (in Chinese with English abstract)



[2]Lü C-G(吕川根), Zong S-Y(宗寿余), Zou J-S(邹江石), Yao K-M(姚克敏). Leaf morphological factors and their heredity in F1 of rice. Acta Agron Sin (作物学报), 2005, 31(8): 1074–1079 (in Chinese with English abstract) 



[3]He Y(贺勇), Sun H-L(孙焕良), Meng G-Y(孟桂元). Advances in Rice leaf morphology. Crop Res (作物研究), 2008, 22(5): 378–380 (in Chinese)



[4]Itoh J I, Nonomura K I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kiyano H, Nagato Y. Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005, 46: 23–47



[5]Huang H(黄海). Recent Progresses from Studies of Leaf Development. Chin Bull Bot (植物学通报), 2003, 20(4): 416–422 (in Chinese with English abstract)



[6]Wu R H, Li B S, He S, Wabmann F, Yu C, Qin G J, Schreiber L, Qu L J, Gu H Y. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23: 3392–3411



[7]Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain Leucine Zipper Class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589–1602



[8]Hibara K I, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J I, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345–354



[9]Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226: 99–108



[10]Li L, Shi Z Y, Li L, Shen G Z, Wang X Q , An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807–817



[11]Xiang J J, Zhang G H, Qian Q, Xue H W. SRL1 encodes a putative GPI-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1–13



[12]Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT-LIKE1 Is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719–735



[13]Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524–532



[14]Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591–1605



[15]Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res, 2010, 20: 935–947



[16]Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2006, 24: 105–109



[17]Jiang Y H, Bao L, Jeong S Y, Kim S K, Xu C G, Li X H, Zhang Q F. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassino-steroids and cell cycling in rice. Plant J, 2012, 70: 398-–408



[18]Zhang L Y, Bai M Y, Wu J X, Zhu J Y, Wang H, Zhang Z G, Wang W F, Sun Y, Zhao J, Sun X H, Yang H J, Xu Y Y, Kim S H, Fujioka S, Lin W H, Chong K, Lu T G, Wang Z Y. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 2009, 21: 3767–3780



[19]Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z. Increased Leaf Angle1, a Raf-Like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011, 23: 4334–4347



[20]Wang L, Wang Z, Xu Y Y, Joo S H, Kim S K, Xue Z, Xu Z H, Wang Z Y, Chong K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J, 2009, 57: 498–510



[21]Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, Encoding a Helix-Loop-Helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol, 2009, 151: 669–680



[22]Zhang C, Xu Y Y, Guo S Y, Zhu J J, Huan Q, Liu H H, Wang L, Luo G Z,Wang X J,Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in Rice. PLos Genet, 2012, 8(4): e1002686



[23]Wang L, Xu Y Y, Zhang C, Ma Q B, Joo S H, Kim S K, Xu Z H, Chong K. OsLIC, a novel CCCH-Type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE, 2008, 3(10): e3521



[24]Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J, 2009, 7: 791–806



[25]Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. Plant J, 2011, 65: 77–86



[26]Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, W.Fraaije M, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom, 2008, 279: 499–507



[27]Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, Zhou Y H, Chu C C, Li X G, Ren F G, Palme K, Zhao B R, Chen J F, Chen M S, Li C Y. Mutation of rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147: 1947–1959



[28]Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X ,Zhang G H, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283–292



[29]Yan S, Yan C J, Zeng X H, Yang Y C,Fang Y W, Tian C Y, Sun Y W ,Cheng Z K, Gu M H. ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. Plant Mol Biol, 2008, 68: 239–250



[30]Zhang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun D Y, Sun Y. Altered architecture and enhanced drought tolerance in rice via the down-regulation of Indole-3-Acetic Acid by TLD1/OsGH3.13 activation. Plant Physiol, 2009, 151: 1889–1901



[31]Cao H P, Chen S K. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regul, 1995, 16: 189–196



[32]Huang J L, Che S G, Jin L, Qin F, Wang G X, Ma N N. The physiological mechanism of a drooping leaf2 mutation in rice. Plant Sci, 2011, 180: 757–765

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[7] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[8] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[9] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[10] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[13] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[14] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[15] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!