欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 761-766.doi: 10.3724/SP.J.1006.2013.00761

• 综述 •    下一篇

探讨品种间差异改良作物水分利用效率

梅旭荣,钟秀丽,刘晓英   

  1. 中国农业科学院农业环境与可持续发展研究所 / 国家作物高效用水与抗灾减损工程实验室 / 农业部旱作节水农业重点开放实验室,北京 100081
  • 收稿日期:2012-08-23 修回日期:2013-10-16 出版日期:2013-05-12 网络出版日期:2013-02-19
  • 基金资助:

    This work was supported by grants from the National Natural Science Foundation of China (Grant number: 30871447) and the Ministry of Science and Technology of China (Grant number: 2011AA100501).

Improving Water Use Efficiency of Crops by Exploring Variety Differences

MEI Xu-Rong,ZHONG Xiu-Li,LIU Xiao-Ying   

  1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory for Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China
  • Received:2012-08-23 Revised:2013-10-16 Published:2013-05-12 Published online:2013-02-19
  • Supported by:

    This work was supported by grants from the National Natural Science Foundation of China (Grant number: 30871447) and the Ministry of Science and Technology of China (Grant number: 2011AA100501).

摘要:

提高水分利用效率是缓解水资源危机实现作物可持续生产的重要策略。本文对叶片尺度的瞬时WUE和单株尺度WUE的品种间差异,瞬时WUE到田间尺度WUE的尺度转换,以及瞬时WUE与产量之间的关系进行了讨论。瞬时WUE具有较大的遗传变异性,在亏水条件下品种间差异更显著。在禾谷类作物上,气孔导度与瞬时WUE密切相关。单株尺度WUE在亏水条件下品种间差异显著,足水条件下差异相对较小。气孔导度是影响单株尺度WUE的重要性状,品种之间气孔对水分亏缺的敏感性差异较大。瞬时WUE向田间尺度WUE的尺度转换不仅受到冠层阻力和边界层阻力的制约,还受土壤蒸发与作物蒸腾比率以及同化物分配模式的影响。瞬时WUE与产量的关系决定于环境的水分条件,在作物生长发育主要依靠土壤中储存水分的干旱条件下,瞬时WUE高对获得高产有利。相反,在水分条件较适宜的地区,高瞬时WUE性状不利于高产。

关键词: 水分利用效率, 产量, 水分亏缺, 品种差异

Abstract:

Improving water use efficiency (WUE) is considered to be an important measure for mitigating the conflict between water resource crisis and sustainable crop production. In this review, variety differences in WUE at different time-space scales, the scaling-up of WUE, and the association between WUE and yield are discussed. WUEintrinsic (WUEi) shows wide genotypic variability, in particular, under water deficit conditions. Variation in WUEi seems to be associated rather with variation in stomatal conductance in cereals. WUEplant (WUEp) differed larger among genotypes under water deficit conditions, in contrast with the smaller difference under well-watered conditions. Stomatal conductance is a determinant trait affecting WUEp based on the studies performed up to date. Genotypes differ largely in stomatal conductance in response to water deficit. Scaling-up of WUE between leaf level and field population level is limited by canopy and boundary layer resistances, partition of water use between soil evaporation and plant transpiration and the internal allocation pattern of biomass. High WUEi associated with low stomatal conductance can result in a considerable yield gain in a dry, stored-moisture, environment but it is likely to be disadvantageous in terms of yield in more favorable growth environments.

Key words: Water use efficiency, Yield, Water deficit, Variety difference

[1]Tanner C B, Sinclair T R. Efficient water use in crop production: research or re-search? In: Taylor H M, Jordan W R, Sinclair T R, eds. Limitations to Efficient Water Use in Crop Production. Madison, Wisconsin, USA: American Society of Agronomy, 1983. pp 1–27



[2]Condon A G, Richards R A, Rebetzke G J, Farquhar G D. Improving intrinsic water-use efficiency and crop yield. Crop Sci, 2002, 42: 122–131



[3]Turner N C. Water use efficiency of crop plants: potential for improvement. In: Buxton I D R ed. International Crop Science. Madison, Wisconsin, USA: Crop Science Society of America, 1993. pp 75–82



[4]Wallace J S, Batchelor C H. Managing water resources for crop production. Philos T R Soc B, 1997, 352: 937–947



[5]Shan L, Deng X P, Zhang S Q. Advance in biological water-saving research: challenge and perspectives. Sci Found China, 2006, 2: 66–71



[6]Zhang Z B, Xu P, Shao H B, Liu M J, Fu Z Y, Chu L Y. Advances and prospects: Biotechnologically improving crop water use efficiency. Crit Rev Biotechnol, 2011, 31: 281–293



[7]Zhang X Y, Chen S Y, Liu M Y, Pei D, Sun H Y. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron J, 2005, 97: 783–790



[8]Polley W H. Implications of atmospheric and climatic change for crop yield and water use efficiency. Crop Sci, 2002, 42: 131–140



[9]Morgan J A, LeCain D R. Leaf gas exchange and related leaf traits among 15 winter wheat genotypes. Crop Sci, 1991, 31: 443–448



[10]Johnson R C. Carbon isotope discrimination, water relations, and photosynthesis in tall fescue. Crop Sci, 1993, 33: 169–174



[11]Abbate P E, Dardanelli J L, Cantarero M G, Maturano M, Melchiori R J M, Suero E E. Climatic and water availability effects on water-use efficiency in wheat. Crop Sci, 2004, 44: 474–483



[12]Van Den Boogaard R, Alewijnse D, Veneklaas E J, Lambers H. Growth and water-use efficiency of 10 Triticum aestivum cultivars at different availability in relation to allocation of biomass. Plant Cell Environ, 1997, 20: 200–210



[13]Krishnamurthy L, Vadez V, Devi M J, Serraj R, Nigam S N, Sheshshayee M S, Chandra S, Aruna R. Variation in transpiration efficiency and its related traits in a groundnut (Arachis hypogaea L.) mapping population. Field Crops Res, 2007, 103: 189–197



[14]Hatfield J L, Sauer T J, Prueger J H. Managing soil to achieve great water use efficiency: a review. Agron J, 2001, 93: 271–280



[15]Farquhar G D, Richards R A. Isotope composition of plant carbon correlates with water use efficiency of wheat genotype. Aust J Plant Physiol, 1984, 11: 539–552



[16]Anyia A O, Herzog H. Water use efficiency, leaf area and leaf gas exchange of cowpeas under midseason drought. Eur J Agron, 2004, 20: 327–339



[17]Rao R C N, Wright G C. Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Sci, 1994, 34: 98–103



[18]Condon A G, Farquhar G D, Richards R A. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies. Aust J Plant Physiol, 1990, 17: 9–22



[19]Martin B, Kebede H, Rilling C. Photosynthetic differences among Lycopersicon species and Tricum aestivum cultivars. Crop Sci, 1994, 34: 113–118



[20]Morgan J A, LeCain D R, McCaig T N, Quick J S. Gas exchange, carbon isotope discrimination, and productivity in winter wheat. Crop Sci, 1993, 33: 178–186



[21]Ehleringer J R, Klassen S, Clayton C, Sherrill D, Fuller-Holbrook M, Fu Q A, Cooper T A. Carbon isotope discrimination and transpiration efficiency in common bean. Crop Sci, 1991, 31: 1611–1615



[22]Vyas S P, Garg B K, Kathju S, Lahiri A N. Influence of potassium on water relations, photosynthesis, nitrogen metabolism and yield of cluster bean under soil moisture stress. Indian J Plant Physiol, 2001, 6: 30–37



[23]Siemens J A, Zwiazek J J. Effect of water deficit stress and recovery on the root water relations of trembling aspen (Populus tremuloides) seedlings. Plant Sci, 2003, 165: 113–120



[24]Bota J, Flexas J, Medrano H. Genetic variability of photosynthesis and water use in Balearic grapevine cultivar. Ann Appl Biol, 2001, 138: 353–361



[25]Devi M J, Sinclair T R, Vadez V. Genotypic variation in peanut for transpiration response to vapor pressure deficit. Crop Sci, 2010, 50: 191–196



[26]Bhatnagar-Mathur P, Devi M J, Reddy D S, Lavanya M, Vadez V, Serraj R, Shinozaki K Y, Sharma K K. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep, 2007, 26: 2071–2082



[27]Khazaei H, Monneveux P, Shao H, Mohammady S. Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genet Resour Crop Evol, 2010, 57: 307–314



[28]Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 503–537



[29]Hubick K T, Farquhar G D, Shorter R. Correlation between water use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm. Aust J Plant Physiol, 1986, 13: 803–816



[30]Nageswara Rao R C, Williams J H, Wadia K D R, Hubick K T, Farquhar G D. Crop growth, water-use efficiency and carbon isotope discrimination in groundnut (Arachis hypogaea L.) genotypes under end-of-season drought conditions. Ann Appl Biol, 1993, 122: 357–367



[31]Bhatnagar-Mathur P, Devi M J, Vadez V, Sharma K K. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol, 2009, 166: 1207–1217



[33]Devi M J, Sinclair T R, Vadez V, Krishnamurthy L. Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying. Field Crops Res, 2009, 114: 280–285



[34]Devi M J, Bhatnagar-Mathur P, Sharma K K, Serraj R, Anwar S Y, Vadez V. Relationships between transpiration efficiency (TE) and its surrogate traits in the rd29A:DREB1A transgenic groundnut). J Agron Crop Sci, 2011, 197: 272–283



[35]Liu F L, Andersen M N, Jacobsen S E, Jensen C R. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ Exp Bot, 2005, 54: 33–40



[36]Anyia A O, Slaski J J, Nyachiro J M, Archambault D J, Juskiw P. Relationship of carbon isotope discrimination to water use efficiency and productivity of Barley under field and green house conditions. J Agron Crop Sci, 2007, 193: 313–323



[37]Jaleel C A, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C R Biologies, 2008, 331: 42-47



[38]Ratnakumar P, Vadez V, Nigam S N, Krishnamurthy L. Assessment of transpiration efficiency in peanut (Arachis hypogaea L.) under drought using a lysimeter system. Plant Biol, 2009, 11(suppl-1): 124–130



[39]Vadez V, Rao S, Kholova J, krishnamurthy L, Kashiwagi J, Ratnakumar P, Sharma K K, Bhatnagar-Mathur P, Basu P S. Root research for drought tolerance in legumes: Qua vadis? J Food Legumes, 2008, 21: 77–85



[40]Wang H, Zhang L, Dawes W R, Liu C. Improving water use efficiency of irrigated crops in the North China Plain-measurements and modeling. Agric Water Manage, 2001, 48: 151–167



[41]Guo J-X(郭家选), Li Y-Z(李玉中), Yan C-R(严昌荣), Zhao Q-S(赵全胜), Mei X-R(梅旭荣). Evapotranspiration of winter wheat field in the North China Plain. Chin J Appl Ecol (应用生态学报), 2006, 17: 2357–2362 (in Chinese with English abstract)



[42]Zhao F, Yu G, Li S, Ren C, Sun X, Mi N, Li J, Ou-Yang Z. Canopy water use efficiency of winter wheat in the North China Plain. Agric Water Manage, 2007, 93: 99–108



[43]Bolger T P, Turner N C. Transpiration efficiency of three Mediterranean annual pasture species and wheat. Oecologia, 1998, 115: 32–38



[44]Jarvis P G, McNaughton K G. Stomatal control of transpiration: Scaling up from leaf to region. Adv Ecol Res, 1986, 15: 1–49



[45]Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol, 1982, 9: 121–137



[46]Ehdaie B, Hall A E, Farquhar G D, Nguyen H T, Waines J G. Water-use efficiency and carbon isotope discrimination in wheat. Crop Sci, 1991, 31: 1282–1288



[47]Hubick K T, Farquhar G D. Carbon isotope discrimination and the ratio of carbon gained to water lost in barley genotypes. Plant Cell Environ, 1989, 12: 795–804



[48]Condon A G, Richards R A, Farquhar G D. Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field-grown wheat. Crop Sci, 1987, 27: 996–1001



[49]Johnson D A, Asay K H, Tieszen L L, Ehleringer J R, Jefferson P G. Carbon isotope discrimination: potential in screening cool-season grasses for water-limited environments. Crop Sci, 1990, 30: 338–343



[50]White J W, Castillo J A, Ehleringer J. Association between productivity, root growth and carbon isotope discrimination in Phaseolus vulgaris under water deficit. Aust J Plant Physiol, 1990, 17: 189–198



[51]Voltas J I, Romagosa I, Lafarga A, Armesto A P, Sombrero A, Araus J L. Genotype by environment interaction for grain yield and carbon isotope discrimination of barley in Mediterranean Spain. Aust J Agric Res, 1999, 50: 1263–1271



[52]Merah O, Deleens E, Souyris I, Nachit M, Monneveux P. Stability of isotope discrimination and grain yield in durum wheat. Crop Sci, 2001, 41: 677–681



[53]Jiang Q, Roche D, Hole D J. Carbon isotope discrimination of two-rowed and six-rowed barley genotypes and under irrigated and non-irrigated conditions. Can J Plant Sci, 2006, 86: 433–441



[54]Wright C G, Hubick K T, Farquhar G D. Discrimination in carbon isotopes of leaves correlates with water-use efficiency of field-grown peanut cultivars. Aust J Plant Physiol, 1988, 15: 815–825



[55]Hubick K T. Effects of nitrogen source and water limitation on growth, transpiration efficiency, and carbon isotope discrimination in peanut cultivars. Aust J Plant Physiol, 1990, 17: 413–430



[56]Rebetzke G J, Condon A G, Richards R A, Farquhar G J. Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci, 2002, 42: 739–745



[57]Lambrides C J, Chapman S C, Shorter R. Surveys of carbon isotope discrimination in sunflower reveal considerable genetic variation, a strong association with transpiration efficiency and evidence of cytoplasmic inheritance. Crop Sci, 2004, 44: 1642–1653



[58]Stiller W N, Read J J, Constable G A, Reid P E. Selection for water use efficiency traits in cotton breeding programme: genotype differences. Crop Sci, 2005, 45: 1107–1113



[59]Richards R A. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manag, 2006, 80: 197–211

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!