欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 775-788.doi: 10.3724/SP.J.1006.2013.00775

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成

范虎,文自翔,王春娥,王芳,邢光南,赵团结,盖钧镒*   

  1. 南京农业大学大豆研究所 / 农业部大豆生物学与遗传育种重点实验室 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室,江苏南京 210095
  • 收稿日期:2012-06-12 修回日期:2012-12-15 出版日期:2013-05-12 网络出版日期:2013-02-19
  • 通讯作者: 盖钧镒,E-mail: sri@njau.edu.cn,Tel: 025-84395405
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB1184, 2010CB1259, 2011CB1093), 国家自然科学基金资助项目(31071442), 教育部高等学校创新引智计划项目(B08025), 江苏省优势学科建设工程专项和国家重点实验室自主课题资助。

Association Analysis between Agronomic-Processing Traits and SSR Markers and Genetic Dissection of Specific Accessions in Chinese Wild Soybean Population

FAN Hu,WEN Zi-Xiang,WANG Chun-E,WANG Fang,XING Guang-Nan,ZHAO Tuan-Jie,GAI Jun-Yi*   

  1. Soybean Research Institute of Nanjing Agricultural University / Key Laboratory for Soybean Biology, Genetics and Breeding, Ministry of Agriculture / National Center for Soybean Improvement / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2012-06-12 Revised:2012-12-15 Published:2013-05-12 Published online:2013-02-19
  • Contact: 盖钧镒,E-mail: sri@njau.edu.cn,Tel: 025-84395405

摘要:

选用204SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM (general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴别出一批与农艺、加工性状关联的优异等位变异及携带优异等位变异的载体材料;进一步分析极值表型材料的遗传构成。结果表明: (1)累计51个位点()与性状关联,有些标记同时与2个或多个性状相关联,可能是性状相关的遗传基础;关联位点中累计16位点()与连锁分析定位的QTL一致;(2)与地方品种群体和育成品种群体的关联位点比较,发现野生群体关联位点只有少数与之相同,群体间育种性状的遗传结构有明显差异。(3)与多性状关联的位点其等位变异对不同性状的效应方向可相同可不同,如GMES5532a-A332对百粒重和耐淹性的相对死苗率都是增效效应,而GMES5532a-A344对百粒重是减效效应,对相对死苗率是增效效应;(4)极值表型材料间的遗传构成有很大差异。表型值大的材料携带较多增效效应大的位点等位变异,例如N23349的百粒重是9.08 g,含有4个增效效应较大的位点等位变异;表型值小的材料携带较多减效效应大的位点等位变异,如N23387的百粒重是0.75 g,含有4个减效效应较大的位点等位变异。关联作图得到的信息可以弥补连锁定位信息的不足,尤其是全基因组位点上复等位变异的信息为育种提供了亲本选配和后代等位条带辅助选择的依据。

关键词: 野生大豆(Glycine soja Sieb. et Zucc.), SSR, 关联分析, 优异等位变异

Abstract:

Association analysis is potential in genetic dissection of germplasm accessions and breeding materials for designing crosses and improving selection efficiencies. The present study was aimed at finding elite QTLs/alleles as well as their carriers through genetic dissection of agronomic-processing traits in Chinese annual wild soybean (Glycine soja Sieb. et Zucc.) population for improvement and broadening the genetic background of modern soybean cultivars. The genotypic data of 204 simple-sequence repeat (SSR) markers on 174 wild accessions sampled from and evenly distributed in all the wild soybean eco-regions in China were used and analyzed for association with six agronomic and processing traits under TASSEL GLM (general linear model) program based on the population structure analysis. The QTLs significantly associated with the traits were analyzed further for their allele effects. The results showed: (1) Fifty-one SSR loci (times) associated with the six agronomic-processing traits were identified in the wild population. There were a few markers/loci associated with two or more traits simultaneously, which might be the genetic bases of correlation among the traits. Sixteen of fifty-one associated loci (times) were in agreement with mapped QTLs from linkage mapping procedure. (2)There existed only a few association loci in wild population coincided with those in landrace and released cultivar populations, indicating the difference of genetic structure among the three kinds of populations. (3) A set of elite alleles of detected loci and their carrier materials were screened out. Alleles for loci associated with several traits had different phenotypic effects in different traits, e.g. GMES5532a-A332 had positive phenotypic effect for both 100-seed weight and seedling death rate under submergence, while GMES5532a-A344 had negative effect on 100-seed weight but positive effect on seedling death rate under submergence. (4)There showed great difference of the genetic structure among the tested materials with extreme phenotypic value. The extreme accessions possessed the alleles with bigger effects, such as N23349 containing four alleles with bigger positive effects having its 100-seed weight as high as 9.08 g, while N23387 containing four alleles with bigger negative effects having its 100-seed weight only 0.75 g. The above results implied that association mapping could offer further genetic information complementary to linkage mapping, especially the information of multiple alleles of QTL on whole genome could be used in cross design for pyramiding elite alleles and marker-assisted selection in breeding for soybean.

Key words: Wild soybean (Glycine soja Sieb. et Zucc.), Simple-sequence repeat (SSR), Association analysis, Elite allele

[1]Mackay I, Powel W. Methods for linkage disequilibrium mapping in crops. Trend Plant Sci, 2006, 12: 57–63



[2]March R E. Gene mapping by linkage and association analysis. Mol Biotechnol, 1999, 13: 113–122



[3]Yu J, Edward S B. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 2006, 17: 155–160



[4]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286−289



[5]Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: A high resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064



[6]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341–356



[7]Roy J K, Bandopadhyay R, Rustgi S, Balyan H S, Gupta P K. Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Curr Sci, 2006, 90: 683–689



[8]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165–1177



[9]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin (作物学报), 2008, 34(7): 1169–1178 (in Chinese with English abstract)



[10]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agron Sin (作物学报), 2008, 34(8): 1339–1349 (in Chinese with English abstract)



[11]Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Association analysis of agronomic trait QTLs with SSR markers in released soybean cultivars. Acta Agron Sin (作物学报), 2008, 34(12): 2059–2069 (in Chinese with English abstract)



[12]Fan H(范虎), Zhao T-J(赵团结), Ding Y-L(丁艳来), Xing G-N(邢光南), Gai J-Y(盖钧镒). Genetic analysis of the characteristics and geographic differentiation of Chinese wild soybean population. Sci Agric Sin (中国农业科学), 2012, 45(3): 414–425 (in Chinese with English abstract)



[13]Wang C-E(王春娥), Gai J-Y(盖钧镒). Study on measurement technology of tofu and soymilk output for large amount of mini-specimen. Soybean Sci (大豆科学), 2007, 26(2): 224–229 (in Chinese with English abstract)



[14]Wang F(王芳), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Evaluation, eco-region characterization and elite germpalsm identification of submergence tolerance at seedling stage in wild and cultivated soybeans. Soybean Sci (大豆科学), 2007, 26(6): 828–834 (in Chinese with English abstract)



[15]Doyle J J, Doyle J I. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 149–151



[16]Edward Buckler Lab. Maize Diversity Research (2007-01-30) http://www.maizegenetics.net/bioinformatics [2007-09-08]



[17]Reinprecht Y, Poysa V W, Yu K F, Rajcan I, Ablett G R, Pauls K P. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merr.) germplasm. Genome, 2006, 49: 1510–1527



[18]Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet, 2005, 111: 851–861



[19]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651



[20]Watanabe S, Harada K, Abe J. Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci, 2012, 61: 531–543



[21]Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012: E2155–E2164



[22]Tasma I M, Lorenzen L L, Green D E, Shoemaker R C. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed, 2001, 8: 25–35



[23]Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008, 180: 995–1007



[24]Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188: 395–407



[25]Lee S H, Bailey M A, Mian M A R, Carter T E, Jr. Ashley D A, Hussey R S, Parrott W A, Boerma H R. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci, 1996, 36: 728–735



[26]Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004, 108: 458–467

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[7] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[10] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[11] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[12] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[13] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!