作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1013-1020.doi: 10.3724/SP.J.1006.2013.01013
秦雁玲1,2,尹亮3,赵金凤2,孙伟3,赵庆雷3,袁守江3,朱文银3,郭宝太1,*,李学勇2,*
IN Yan-Ling1,2,YIN Liang3,ZHAO Jin-Feng2,SUN Wei3,ZHAO Qing-Lei3,YUAN Shou-Jiang3,ZHU Wen-Yin3,GUO Bao-Tai1,*,LI Xue-Yong2,*
摘要:
通过EMS诱变粳稻品种日本晴,筛选到2个矮秆突变体s1-46和s1-96。突变体主要表现为株高降低,分别为野生型的44.7%和55.9%,且叶片直立,穗粒数减少,籽粒变短。暗处理时,野生型的中胚轴伸长,但突变体的不伸长,说明突变性状与油菜素内酯(BR)相关。外源活性BR处理后,突变体与野生型的叶夹角均变大,根长均变短,表明突变基因与BR的生物合成相关。遗传分析表明,该突变性状由1对隐性基因控制。通过与籼稻品种Dular杂交构建F2群体,将该基因定位在第1染色体40.9 kb范围内。测序表明,该基因与参与BR生物合成的D2基因等位,其中s1-46第305位的氨基酸由脯氨酸突变成亮氨酸,而s1-96第370位的甘氨酸突变成谷氨酸。
[1]Azpiroz R, Wu Y, LoCascio J C, Feldmann K A. An Arabidopsis brassinosteriod-dependent mutant is blocked in cell elongation. Plant Cell, 1998, 10: 219–230[2]Cheon J, Park S Y, Schulz B, Choe S. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC Plant Biol, 2010, 10: 270[3]Yamamoto R, Demura T, Fukuda H. Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol, 1997, 38: 980–983[4]Fukuda H. Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol, 2004, 5: 379–391[5]Neff M M, Nguyen S M, Malancharuvil E J, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J. BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA, 1999, 96: 15316–15323[6]song L, Zhou X Y, Li L, Xue L, Yang X, Xue H W. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. Mol Plant, 2009, 2: 755–772[7]wada K, Marumo S, Ikekawa N, Morisaki M, Mori K. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiol, 1981, 22: 323–325[8]wada K, Marumo S, Abe H, Morishita T, Nakamura K, Uchiyama M, Mori K. A rice lamina inclination test—a micro-quantitative bioassay for brassinosteroids. Agric Biol Chem, 1984, 48: 719–726[9]sasse J M, Smith R, Hudson I. Effect of 24-epibrassinolide on germination of seeds of Eucalyptus camaldulensis in saline conditions. Proc Plant Growth Regul Soc Am, 1995, 22: 136–141[10]Steber G M, McCourt P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol, 2001, 125: 763–769[11]Kim T W, Michniewicz M M, Bergmann D C, Wang Z Y. Brassinosteroid inhibits stomatal development by releasing GSK3-mediated inhibition of a MAP kinase pathway. Nature, 2012, 482: 419–422[12]Fujii S, Hirai K, Saka H. Growth-regulating action of brassinolide in rice plants. In: Cutler H G, Yokota T, Adam G, eds. Brassinosteroids: Chemistry, Bioactivity, and Application. Washington, DC: American Chemical Society, 1991. pp 306–311[13]Iwahori S, Tominaga S, Higuchi S. Retardation of abscission of citrus leaf and fruitlet explants by brassinolide. Plant Growth Regul, 1990, 9: 119–125[14]Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J, 2003, 33: 887–898[15]Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Uequchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2006, 24: 105–109[16]Sumiyo T, Motoyuki A, Shozo F, Suguru T, Shigeo Y, Masahiro Y, Atsushi Y, Hidemi K, Makoto M, Yukiko F, Hisaharu K, Yukimoto I. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776–790[17]Bishop G J. Plants steroid hormone, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol, 2001, 42: 114–120[18]Zhi H, Miyako U T, Kazuto U, Sakurako U, Shozo F, Suguru T, Shigeo Y, Motoyuki A, Hidemi K, Makoto M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900–2910[19]Zhi H, Miyako U T, Sae S S, Yoshiaki I, Shozo F, Yukihisa S, Suguru T, Masakazu A, Shigeo Y, Yoshihisa W, Sakurako U, Hidemi K, Motoyuki A, Makoto M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002, 32: 495–508[20]Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591–1605[21]Iwata N, Satoh H, Omura T. The relationships between chromosomes identified cytologically and linkage groups. Rice Genet Newsl, 1984, 1: 128–132[22]Zhi H, Miyako U T, Shozo F, Suguru T, Shigeo Y, Yasuko H, Motoyuki A, Hidemi K, Makoto M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005, 17: 2243–2254[23]Wang G-L(王关林), Fang H-Y(方宏筠). Plant Gene Engineering (植物基因工程), 2nd edn. Beijing: Science Press, 2002. pp 742–744(in Chinese)[24]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[25]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp, 1977, 16: 1–18[26]Oki K. Study of novel d1 alleles, defective mutants of the alpha subunit of heterotrimeric G-protein in rice. Genes Genet Syst, 2009, 84: 35-42[27]Yoichi M, Tomoaki S, Yoshiaki I, Masakazu A, Hidemi K, Motoyuki A, Makoto M. Morphological alteration caused by brassinosteroid insensitivity increases the bomass and grain production of rice. Plant Physiol, 2006, 141: 924–931 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|