作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1039-1044.doi: 10.3724/SP.J.1006.2013.01039
郭爽**,李云峰**,任德勇,张天泉,何光华*
GUO Shuang**, LI Yun-Feng**, REN De-Yong, ZHANG Tian-Quan, and HE Guang-Hua*
摘要:
鉴定和克隆水稻花器官突变体新基因,对了解水稻花器官发育的分子遗传机制和分子信号调控途径有着重要的作用。本研究报道了1个水稻颖壳异常突变体,来源于EMS (ethyl methane sulfonate)处理的缙恢10号(Oryza sativa)诱变群体,暂被命名为degraded hull 2 (dh2)。表型分析发现突变体小花第一轮内稃或外稃横向细胞数目减少,导致内稃或外稃变窄而不能正常勾合,从而呈现开裂现象,其内三轮花器官均无明显变化。遗传分析表明该突变性状受1个隐性单基因控制。利用群体分离分析法(bulked segregation analysis, BSA),将DH2基因定位在第3染色体的IND-5和IND-14之间,遗传距离分别为0.99 cM和1.49 cM。该研究结果为DH2基因的图位克隆奠定了基础,对水稻花发育生物学研究具有重要的意义。
[1]Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactionsamong floral homeotic genes of Arabidopsis. Development, 1991, 112: 1–20[2]Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31–37[3]Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol, 2004, 14: 1935–1940[4]Theissen G, Saedler H. Plant biology: Floral quartets. Nature, 2001, 409: 469–471[5]Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203–209[6]Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1, DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705–718[7]Whipple C J, Ciceri P, Padilla C M, Ambrose B A, Bandong S L, Schmidt R J. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 2004, 131: 6083–6091[8]Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G H, Hirano H Y. Functional diversification of the two C-class MADS-box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006, 18: 15–28[9]Mandel M A, Brown C G, Savidge B, Yanofsky M F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992, 360: 273–277[10]Drews G N, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell, 1991, 65: 991–1002[11]Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene agamous in transgenic Arabidopsis plants alters floral organ identity. Cell, 1992, 71: 119–131[12]Xiao H, Tang J F, Li Y F, Wang W M, Li X B, Jin L, Xie R, Luo H F, Zhao X F, Meng Z, He G H, Zhu L H. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J, 2009, 59: 789–801[13]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[14]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325[15]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)[16]Luo Z K, Yang Z L, Zhong B Q, Li Y F, Xie R, Zhao F M, Ling Y H, He G H. Genetic analysis and fine mapping of a dynamic rolled leaf gene RL10 (t) in rice (Oryza sativa L.). Genome, 2007, 50: 811–817[17]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181[18]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175[19]Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs, Plant J, 2005, 43: 915–928[20]Jin Y, Luo Q, Tong H N, Wang A J, Cheng Z J, Tang J F, Li D Y, Zhao X F, Li X B, Wan J M, Jiao Y L, Chu C C, Zhu L H. An at-hook gene is required for palea formation and floral organ number control in rice. Dev Biol, 2011, 359: 277–288[21]Agrawal K G, Abe K, Yamazaki M, Miyao A, Hirochika A. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss of function mutants of the OsMADS1 gene. Plant Mol Biol, 2005, 59: 125–135[22]Chen Z X, Wu J G, Ding W N, Chen H M, Wu P, Shi C H. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta, 2006, 223: 882–890[23]Wang K J, Tang D, Hong L L, Xu W Y, Huang J, Li M, Gu M H, Xue Y B, Cheng Z K. DEP and AFO regulate reproductive habit in rice. PloS Genet, 2010, 6: e1000818[24]Yuan Z, Gao S, Xue D W, Luo D, Li L T, Ding S Y, Yao X, Wilson Z A, Qian Q, Zhang D B. RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol, 2009, 149: 235–244[25]Shinnosuke O, Mayumi K, Maiko S, Akio M, Hirohiko H, Eiji U, Yasuo N, Hitoshi Y. MOSAIC FLORAL ORGANS 1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell, 2009, 21: 3008–3025[26]Sang X C, Li Y F, Luo Z K, Ren D Y, Fang L K, Wang N, Zhao F M, Ling Y H, Yang Z L, Liu Y S, He G H. CHIMERIC FLORAL ORGANS 1, encoding a Monocot-specific MADS-box protein, regulates floral organ identity in rice. Plant Physiol, 2012, 160: 788–807[27]Zhang Y-Z(张玉烛), Zhang G-H(张桂和), Zhu G-C(朱国才), Deng Q-Y(邓启云), Zhan Q-C(詹庆才). Effects of overcast and raining on flowering, fertilizing and seed setting of early rice. Chin J Rice Sci (中国水稻科学), 1995, 9(3): 173–178 (in Chinese with English abstract)[28]Wang Z(王忠), Gu Y-J(顾蕴洁), Yu H-L(于洪亮), Shi H-Y(石火英), Gao Y-Z(高煜珠). Studies on the cause of formation of deformed kernel of wild abortion type male sterile line in rice. Sci Agric Sin (中国农业科学), 1995, 28(6): 25–31 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[13] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|