欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1345-1351.doi: 10.3724/SP.J.1006.2013.01345

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力

彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*   

  1. 中国农业科学院植物保护研究所 / 农业部作物有害生物综合治理重点实验室, 北京 100081
  • 收稿日期:2013-01-15 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-22
  • 通讯作者: 刘峥, E-mail: liuzheng@caas.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2012AA101504)资助。

Overexpression of Elicitor Protein Encoding Gene Hrip1 Improves Tolerance to Drought and Salt Stresses in Arabidopsis

PENG Xue-Cong,YANG Xiu-Fen,QIU De-Wen,ZENG Hong-Mei,GUO Li-Hua,LIU Zheng*   

  1. Key Laboratory of Pest Management in Crops, Ministry of Agriculture / Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-01-15 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-22
  • Contact: 刘峥, E-mail: liuzheng@caas.cn

摘要:

Hrip1是从极细链格孢(Alternaria tenuissima)代谢物中分离的一种蛋白激发子。将蛋白激发子基因Hrip1转化到拟南芥,对5T1代转基因拟南芥株系进行分子检测, 证明Hrip1基因能够在拟南芥中转录和表达。转基因植株对盐和干旱胁迫的抗性显著增强, 75 mmol L−1 NaCl50 mmol L−1甘露醇渗透胁迫2 d, 转基因植株种子平均相对发芽率为32.1%77.9%, 分别比野生型的增加3.72倍和5.61; 150 mmol L−1 NaCl50 mmol L−1甘露醇处理拟南芥幼苗7 d, 转基因植株平均相对根长为81.79%93.25%, 分别是野生型的1.53倍和1.34倍。3周龄的转基因植株在250 mmol L−1 NaCl条件下胁迫20 d, 平均存活率为67%, 显著高于野生型(42%)(P<0.05); 干旱胁迫25 d, 复水5 d转基因植株平均存活率为72%, 而野生型仅为44%。检测结果显示转基因植株叶片的抗氧化酶活性明显高于野生型, 200 mmol L−1 NaCl200 mmol L−1甘露醇处理24 h, POD活性分别比野生型植株提高1.56倍和1.85, CAT活性分别比野生型植株提高1.641.86倍。说明蛋白激发子Hrip1基因在拟南芥中的表达能够改善和提高植株的耐盐抗旱能力。

关键词: 蛋白激发子, Hrip1, 转基因拟南芥, 干旱胁迫, 盐胁迫

Abstract:

Hrip1 is a novel hypersensitive response-inducing protein secreted by necrotrophic fungus,Alternaria tenuissima. The Arabidopsis thaliana transgenic plants overexpressing Hrip1 showed increased tolerance to drought and salt stresses. Five transformed lines of Arabidopsis were confirmed by PCR, RT-PCR and Western blot analysis. T4 progenies of transgenic Arabidopsis lines and the wild-type plants were tested. The results showed the seed germination rate and root length of transgenic plants were all significantly higher than those of wild type plants (P<0.05) under stress conditions. The average seed relative germination rate of transgenic Arabidopsis lines was 32.1% and 77.9%, which were 3.72 and 5.61 times higher than those of wild-type plants in the two days incubation with 50 mmol L−1 NaCl and 75 mmol L−1 mannitol, respectively. The average relative root length in transgenic plants was 81.79% and 93.25%, which were 1.53 and 1.34 times of that in wild type plants at 7th day on the medium containing 150 mmol L−1 NaCl and 50 mmol L−1 mannitol, respectively. Stress tolerances were improved in the three-week old soil-grown seedlings. Survival rate of transgenic plants and wild type plants was 67 % and 42 % under 250 mmol L−1 NaCl stress for 20 days, respectively and 72 % of the transgenic plants and 44 % of wild-type plants were survived at 5th day re-watering after dehydration stress for 25 days. Otherwise, POD and CAT activities were increased in transgenic plants compared with three wild type plants under salt and drought stresses. At 24 h of treatment with 200 mmol L−1 NaCl and 200 mmol L−1 mannitol, the average POD activity in transgenic seedlings was 1.56 and 1.85 times, CAT activity was 1.64 and 1.86 times higher than those in wild plants, respectively. These data indicated thatthe expression of Hrip1 gene positively regulates salt and drought tolerance in transgenic Arabidopsis.

Key words: Protein elicitor, Hrip1, transgenic Arabidopsis, Drought stress, Salt stress

[1]Xiong L Z, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell Online, 2003, 15: 745–759



[2]Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Shinozaki K Y, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9: 436–442



[3]Zhang Y H, Yang X F, Liu Q, Zhang Y L, Zeng H M, Yuan J J, Mao J J. Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol Res, 2010, 165: 142–151



[4]Zhao M-Z(赵明治), Yang X-F(杨秀芬), Zhang M(张明), Yuan J-J(袁京京), Qiu D-W(邱德文). Purification and Bioactivities of a Protein Growth-activator from Aternaria tenuissima. Chin J Biol Control (中国生物防治), 2007, 23(2): 170–173 (in Chinese with English abstract)



[5]Yang Y Y, Zhang H J, Li G J, Li W, Wang X E, Song F M. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Plant Biotechnol J, 2009, 7(8): 763–777



[6]Qiu D W, Mao J J, Yang X F, Zeng H M. Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Plant Cell Rep, 2009, 28: 925–933



[7]Kulye M, Liu H, Zhang Y L, Zeng H M, Yang X F, Qiu D W. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant Cell Environ, 2012, 35: 2104–2120



[8]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743



[9]Kobayashi K, Cabral S, Calamante G, Maldonado S. Mentaberry A. Transgenic tobacco plants expressing the potato virus X open reading frame 3 gene develop specific resistance and necrotic ring symptoms after infection with the homologous virus. Mol Plant-Microbe Interact, 2001, 14: 1274−1285



[10]Dai X Y, Xu Y Y, Ma Q B, Xu W Y, Wang T, Xue Y B, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 2007, 143: 1739–1751



[11]Liu Y-C(刘颖超). Resistance Mechanism and Pathogensis-related Genes ExPression in Different Arabidopsis thaliana Ecotypes to Phytophthora infestans. PhD Dissertation of Agricultural University of Hebei, 2004 (in Chinese with English abstract)



[12]Zhang Y-H(张云华), Qiu D-W(邱德文), Zhang L-J(张立军), Yang X-F(杨秀芬), Zeng H-M(曾洪梅), Yuan J-J(袁京京). Purification and its bioactivity of an activator protein PEBC2 from Botrytis cinerea. Acta Phytophyl Sin (植物保护学报), 2009, 35(2): 123–126 (in Chinese with English abstract)



[13]Tang H-K(唐宏琨), Zeng H-M(曾洪梅). Recent advances in fungal protein elicitor and its transgenic plants. Chin J Biol Control (中国生物防治), 2010, 26(4): 480–485 (in Chinese with English abstract)



[14]Kong X P, Pan J W, Zhang M Y, Xing X, Zhou Y, Liu Y, Li D P, Li D Q. ZmMKK4, a novel group C mitogen‐activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ, 2011, 34: 1291–1303



[15]Ali Q, Ashraf M. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. J Agron Crop Sci, 2011, 197: 258–271



[16]Zhang Y M, Yang J F, Lu S Y, Cai J L, Guo Z F. Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul, 2008, 27: 151–158

[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[3] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[6] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[7] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[8] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[9] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[10] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[11] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[12] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[13] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[14] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[15] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!