欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1352-1359.doi: 10.3724/SP.J.1006.2013.01352

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

高粱中SbDREB2基因的克隆与表达分析

谢登雷1,崔江慧2,常金华1,*   

  1. 1河北农业大学农学院,河北保定071000;2河北农业大学资源与环境科学学院,河北保定071000
  • 收稿日期:2013-02-04 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-20
  • 通讯作者: 常金华, E-mail: changjinhua@hebau.edu.cn
  • 作者简介:常金华, E-mail: changjinhua@hebau.edu.cn
  • 基金资助:

    本研究由河北省自然科学基金(2008000340)项目资助。

Cloning and Expression Analysis of SbDREB2 Gene from Sorghum bicolor

XIE Deng-Lei1,CUI Jiang-Hui2,CHANG Jin-Hua1,*   

  1. 1 College of Agronomy, Agricultural University of Hebei, Baoding 071000, China; 2 College of Resources and Environment Science, Agricultural University of Hebei, Baoding 071000, China
  • Received:2013-02-04 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-20
  • Contact: 常金华, E-mail: changjinhua@hebau.edu.cn
  • About author:常金华, E-mail: changjinhua@hebau.edu.cn

摘要:

干旱应答元件结合蛋白(DREB)在植物非生物逆境胁迫中调节下游一系列抗逆基因的表达。本研究利用电子克隆和RT-PCR方法从高粱中克隆到1DREB类基因SbDREB2,该基因ORF 789 bp,推测编码蛋白含262个氨基酸残基,相对分子质量28.6 kD,理论等电点为5.52,在DNA序列内包含1740 bp的内含子,符合GT-AG剪接规则。氨基酸序列分析表明,该蛋白在82~145区含有DREB类转录因子家族特有的AP2保守结构域,与玉米DREB2A及水稻DREB1蛋白相似度分别为84%69%。成功构建了原核表达载体pET28a-SbDREB2,经IPTG诱导获得32.5 kD左右蛋白,与理论值一致。Real-time PCR表达特性分析显示,该基因为组成型表达,在根、茎、叶中均表达,根中表达量约是茎中的2.5倍;受干旱、高盐和外源ABA的强烈诱导,但对低温几乎没有响应。

关键词: 高粱, SbDREB2, 原核表达, 胁迫处理, 荧光定量PCR

Abstract:

DREBs play important roles in regulating the expression of downstream genes in response to a variety of abiotic stresses. In this paper, a DREB-like gene, named SbDREB2, was assembled by searching sorghum EST and genome databases. The SbDREB2 gene was cloned from salinity-stressed sorghum seedling by RT-PCR. SbDREB2 contains a 789 bp complete open reading frame (ORF) which encodes a peptide of 262 amino acids. The predicted molecular weight and isoelctric point of SbDREB2 are 28.64 kD and 5.52, respectively. There is a 740 bp intron in the DNA sequence of SbDREB2. The amino acids analysis indicated that the predicted protein sequence contained a typical AP2 DNA-binding domain in the 82–145 regions. Multiple sequences alignment revealed that SbDREB2 shared 84% and 69% sequence similarities with Zea mays DREB2A and Oryza sativa DREB1, respectively. Prokaryotic expression vector pET28a-SbDREB2 was established and transformed BL21 (DE3) into E. coli after IPTG induction, showing a successful gene expression. The expression pattern analysis carried out by quantitative real-time PCR indicated that SbDREB2 was constitutively expressed in various tissues of sorghum, and was strongly up-regulated under high salinity, drought and exogenous application of abscisic acid (ABA). However, the expression of SbDREB2 was not affected by low temperature.

Key words: Sorghum, SbDREB2, Prokaryotic expression, Abiotic stress, Quantitative real-time PCR

[1]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406



[2]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6: 410–417



[3]Agarwal P K, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Plant, 2010, 54: 201–212



[4]Liu Q, Zhao N M, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chin Sci Bull, 2000, 45: 970–975



[5]Kizis D, Lumbreras V, Pages M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett, 2001, 498: 187–189



[6]Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130: 639–648



[7]Li X P, Tian A G, Luo G Z, Gong Z Z, Zhang J S, Chen S Y. Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet, 2005, 110: 1355–1362



[8]Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127: 910–917



[9]Shen Y G, Zhang W K, He S J, Zhang J S, Liu Q, Chen S Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet, 2003, 106: 923–930



[10]Kume S, Kobayashi F, Ishibashi M, Ohno R, Nakamura C, Takumi S. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Gene Systems, 2005, 80: 185–197



[11]Gao S Q, Chen M, Xia L Q, Xiu H J, Xu Z S, Li L C, Zhao C P, Chen X G, Ma Y Z. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep, 2009, 28: 301–311



[12]QIN F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042–1052



[13]Hong J P, Kim W T. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper ( Capsicum annuum L. cv. Pukang). Planta, 2005, 220: 875–888



[14]Liu X-Y(刘宣雨), Wang Q-Y(王青云), Liu S-J(刘树君), Song S-Q(宋松泉). Research progress of gene transformation methods in sorghum. Chin Bull Bot (植物学报), 2011, 46(2): 216–223 (in Chinese with English abstract)



[15]Nawaz K, Talat A, Iqra, Hussain K, Majeed A. Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor L.) by exogenous application of Proline at seedling stage. World Appl Sci J, 2010, 10: 93–99



[16]Sun L(孙璐), Zhou Y-F(周宇飞), Wang C(汪澈), Xiao M-J(肖木辑), Tao Y(陶冶), Xu W-J(许文娟), Huang R-D(黄瑞冬). Screening and identification of sorghum cultivars for salinity tolerance during germination. Sci Agric Sin (中国农业科学), 2012, 45(9): 1714–1722 (in Chinese with English abstract)



[17]Gao J M, Xia B X, Yang H, Qu R G, Gui Z, Luo F, Pei Z Y, Sun S J. Comparative study on four methods for quick extraction of sorghum genomic DNA. Agric Sci Technol, 2011, 12: 686–687



[18]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–??CT method. Methods, 2001, 25: 402–408



[19]Wang S-X(王少峡), Wang Z-Y(王振英), Peng Y-K(彭永康). Dehydration responsive element binding (DREB) transcription activator and its function in plant tolerance to environmental stresses. Plant Physiol J (植物生理学通讯), 2004, 40(1): 7–13 (in Chinese)



[20]Xie X-Z(谢先芝), Wu N-H(吴乃虎). Intron in high plant. Chin Sci Bull (科学通报), 2002, 47(10): 731–737 (in Chinese with English abstract)



[21]Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998–1009



[22]Liu L Q, Zhu K, Yang Y F, Wu J, Chen F D, Yu D Y. Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum ). J Plant Res, 2008, 121: 215–226



[23]Fu X-Y(付晓燕), Peng R-H(彭日荷), Zhang Z(章镇), Qiao Y-S(乔玉山), Zhou J(周军), Zhu B(朱波), Gao F(高峰), Tian Y-S(田永生), Zhao W(赵伟), Xiong A-S(熊爱生), Yao Q-H(姚泉洪). Cloning and expression of transcription factor gene MrDREBA6 from Malus micromalus. J Fruit Sci (果树学报), 2009, 26(6): 761–768 (in Chinese with English abstract)



[24]Sun X-B(孙晓波), Liu J-B(刘金兵), Yu G-H(余桂红), Zhang X(张旭), Zhang P(张鹏), Ma H-X(马鸿翔). Cloning and expression characterization of a SbDREB gene from Salicornia bigelovii Torr. J Plant Genet Resourc (植物遗传资源学报), 2012, 13(1): 111–117 (in Chinese with English abstract)

[1] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[2] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[3] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响[J]. 作物学报, 2021, 47(2): 342-350.
[4] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[5] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[6] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[7] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[8] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
[9] 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744.
[10] 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178.
[11] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[12] 王瑞,凌亮,詹鹏杰,于纪珍,楚建强,平俊爱,张福耀. 控制高粱分蘖与主茎株高一致性的基因定位[J]. 作物学报, 2019, 45(6): 829-838.
[13] 张笑笑,潘映红,任富莉,蒲伟军,王道平,李玉斌,陆平,李桂英,朱莉. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735-1745.
[14] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[15] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!