欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1360-1365.doi: 10.3724/SP.J.1006.2013.01360

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

遗传转化的黑曲霉植酸酶基因(phyA2)对玉米利用土壤有机磷能力的影响

侯文通1,杨俐苹1,*,陈茹梅2,张少军2   

  1. 1中国农业科学院农业资源与农业区划研究所,北京100081;2 中国农业科学院生物技术研究所,北京100081
  • 收稿日期:2013-01-06 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-20
  • 通讯作者: 杨俐苹, E-mail: yangliping@caas.cn, Tel: 010-82105030
  • 基金资助:

    本研究由国家转基因植物新材料的育种价值评估项目(2011ZX08010-005)资助。

Effects of Aspergillus niger phyA2 Transgenic Maize on Utilization of Organic Phosphorus in Soil

HOU Wen-Tong1,YANG Li-Ping1,*,CHEN Ru-Mei2,ZHANG Shao-Jun2   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-01-06 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-20
  • Contact: 杨俐苹, E-mail: yangliping@caas.cn, Tel: 010-82105030

摘要:

以转黑曲霉植酸酶基因(phyA2)玉米T9代纯合系及与之对应世代的阴性对照为材料,通过低磷土壤培养试验研究植酸酶基因(phyA2)对玉米利用土壤有机磷能力的影响。结果显示,在施用植酸钠和不施磷的条件下,与阴性对照相比,转基因玉米根际土壤的磷酸酶活性分别提高5.17%和5.48%,根际中等活性有机磷分别降低16.2%和28.2%;植株磷积累量分别增加140%和100%,各生长指标都明显好于阴性对照。说明遗传转化的黑曲霉植酸酶基因能提高玉米利用土壤有机磷的能力,增加玉米体内磷的积累,改善玉米的生长状况。

关键词: 植酸酶基因, 玉米, 土壤有机磷, 植株磷

Abstract:

Homozygous phyA2 transgenic maize lines at T9 generation and the corresponding generation of negative control were grown in low-phosphorus (P) soil to investigate the ability of maize plant to acquire P from organic sources. It showed that the soil phosphatase activity increased by 5.17% and 5.48%, the moderately labile organic P decreased by 16.2% and 28.2% respectively in phyA2 transgenic maize rhizosphere, and the P accumulation of transgenic plant increased significantly by 140% and 100% respectively as compared with a control plant line when supplied with phytate as P sources and without P-fertilizer. The plant growth of phyA2 transgenic maize was better improved than that of the negative control plant. These data indicated that we can improve the ability of plant to utilize soil organic P, the plant P accumulation and the plant growth by transferring Aspergillus niger phyA2 gene into maize.

Key words: Phytase gene (phyA2), Maize, Soil organic phosphorus, Plant phosphorus

[1]Dalal R C. Soil organic phosphorus. Adv Agron, 1977, 29: 83–117



[2]Turner B L, Paphazy M J, Haygarth P M, Mckelvie I D. Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci, 2002, 357: 449–469



[3]Li Q-K(李庆逵), Zhu Z-L(朱兆良), Yu T-R(于天仁). China's Agricultural Sustainable Development of the Fertilizer (中国农业可持续发展中的肥料问题). Nanchang: Jiangxi Science and Technology Press, 1998. pp 1–5 (in Chinese)



[4]Ullah A H J, Sethumadhavan K, Mullaney E J, Ziegelhoffer T, Philips S A. Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophy Res Commun, 2002, 290: 1343–1348



[5]Pen J, Verwoerd T C, Vanparidon P A, Beudeker R F, Vandenelzen P J M, Geerse K, Vanderklis J D, Versteegh H A J, Vanooyen A J J, Hoekema A. Phytase containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Nat Biotechnol, 1993, 11: 811–814



[6]Verwoerd T C, Paridon P A, Ooyen A J J, Lent J W M, Hoekema A, Pen J. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physical, 1995, 109: 1199–1205



[7]Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J, 2001, 25: 641–649



[8]Han S-F(韩胜芳), Gu J-T(谷俊涛), Xiao K(肖凯). Improving organic phosphate utilization in transgenic white clover by overexpression of Aspergillus niger PhyA gene. Acta Agron Sin (作物学报), 2007, 33(2): 250–255 (in Chinese with English abstract)



[9]Li M, Osaki M, Honma M, Tadano T. Purification and characterisation of phytase induced in tomato roots under phosphorus deficient conditions. Soil Sci Plant Nutr, 1997, 43: 179–190



[10]Brinch P H, Olesen A, Rasmussen S K, Preben B H. Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed, 2000, 6: 195–206



[11]Hong C Y, Cheng K J, Tseng T H, Wang C S, Liu L F, Yu S M. Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res, 2004, 13: 29–39



[12]Fang X-P(方小平), Wang Z(王转), Chen R-M(陈茹梅), Li J(李均), Fan Y-L(范云六), Luo L-X(罗莉霞), Chen K-R(陈坤荣), Ren L(任莉). Transgenic Brassica napus growing with phytate as a sole phosphorus source. Acta Agron Sin(作物学报), 2010, 36(2): 228–232 (in Chinese with English abstract)



[13]Chen R, Xue G, Chen P, Yao B, Yang W Z, Ma Q L, Fan Y L, Zhao Z Y, Tarczynski M C, Shi J R. Transgenic maize plants expressing a fungal phytase gene. Transgenic Res, 2008, 17: 633–643



[14]George T S, Simpson R J, Hadobas P A, Richardson A E. Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soil. Plant Biotechnol J, 2005, 3: 129–140



[15]Wang Y(王祎). The Utilization of Transgenic Cotton with PhyA Gene for Organic Phosphate in Soil. PhD Dissertation of Huazhong Agricultural University, 2009 (in Chinese with English abstract)



[16]Huang H(黄惠). Study on Soil Phosphorus Uptake and Utilization of Transgenic Canola. PhD Dissertation of Agricultural University of Hebei, 2011 (in Chinese with English abstract)



[17]Tomes D T. Direct DNA transfer into plant cell via microprojectile bombardment. In: Gamborg O L, Philipps G C, eds. Plant Cell Tissue and Organ Culture: Fundamental Methods. Berlin: Springer-Verlag Publisher, 1995. pp 197–213



[18]Mao D-R(毛达如). Plant Nutrition Research Methods (植物营养研究方法), 2nd edn. Beijing: China Agricultural University Press, 2005. pp 423–424 (in Chinese)



[19]Lu R-K(鲁如坤). Soil Agricultural Chemical Analysis Method(土壤农业化学分析方法). Beijing: China Agriculture Science and Technology Press, 2000. pp 166–315 (in Chinese)



[20]Tarafdar J C, Jungk A. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Feral Soils, 1987, 3:199-204



[21]Gerloff G C, Gabelman W H. Genetic basis of inorganic plant nutrition. In: Lauchli A, Bieleski R L, eds. Encyclopediaof Plant Physiology (New series Vol 15B). Berlin: Springer-Verlag, 1983. pp 450–480



[22]Elliot G C, Lauchi A. Phosphorus efficiencyandphosphate-ironin-teraction in maize. Agron J, 1985, 77: 399–403



[23]Helal H M. Varietal differences in root phosphatase activity as related to the utilization of organic phosphates. Plant & Soil, 1990, 123: 161–163

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!