欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1548-1561.doi: 10.3724/SP.J.1006.2013.01548

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉早熟基因来源的遗传分析

艾尼江1,2,刘任重1, 3,赵图强2,秦江鸿2,张天真1,*   

  1. 1 南京农业大学作物遗传与种质创新国家重点实验室 / 教育部杂交棉创制工程研究中心,江苏南京210095;2 新疆石河子农业科技开发研究中心,新疆石河子832000;3 山东棉花研究中心,山东济南250100
  • 收稿日期:2013-02-13 修回日期:2013-04-22 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 通讯作者: 张天真, E-mail: cotton@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(CB101708)和江苏高校优势学科建设工程资助项目提供资助。

Analysis of Early Maturity Gene Sources in Upland Cotton Using Molecular Markers

AI Ni-Jiang1,2,LIU Ren-Zhong1,3,ZHAO Tu-Qiang2,QIN Jiang-Hong2,ZHANG Tian-Zhen1,*   

  1. 1 National Key Laboratory of Crop Genetics and Germplasm Enhancement / Cotton Hybrid R & D Engineering Center (the Ministre of Education), Nanjing Agricultural University, Nanjing 210095, China; 2 Shihezi Agricultural Science & Technology Research Center, Shihezi 832000, China; 3 Shandong Cotton Research Center, Jinan 250100, China
  • Received:2013-02-13 Revised:2013-04-22 Published:2013-09-12 Published online:2013-07-09
  • Contact: 张天真, E-mail: cotton@njau.edu.cn

摘要:

棉花早熟性相关的性状多为复杂的数量性状,是由多个基因和环境共同作用的结果,其遗传基础研究比较困难。利用连锁作图和关联分析方法,对目标性状进行基因定位,找出与性状相关联的位点,为解析复杂性状的基因来源提供了新的手段。本文分别以早熟亲本新陆早8号和新陆早10号为母本,以陆地棉标准系TM-1为父本构建F2作图群体,利用在亲本间筛选出的多态性SSR引物,通过JoinMap 3.0软件构建了2张遗传图谱,以Win QTLCart 2.5复合区间作图法在F2~F2:3中定位到控制全生育期、苗期、蕾期、花铃期和霜前铃数等早熟性相关性状的37QTL。控制早熟性的有利等位基因多来自早熟祖先611波和金字棉。多数性状在两类材料中由不同的基因控制,且以加性遗传为主。在由43个陆地棉品种材料构成的自然群体中通过关联分析检测到54个与这些早熟性相关性状极显著关联的位点。研究表明连锁作图和关联分析的检测结果具有较高的可比性。本研究为早熟陆地棉聚合改良以及分子标记辅助育种打下了基础。

关键词: 陆地棉, 早熟基因, QTL定位, 关联分析

Abstract:

The traits related to early maturity in upland cotton are quantitative traits usually affected by multiple genes and environments, it is difficult to dissect their genetic basis. However, both linkage mapping and association analysis provide new tools toward interpreting the gene sources of complex traits. In this study, two F2 mapping populations were constructed by using upland genetic standard line TM-1 as male to cross with female parents Xinluzao 8 and 10, respectively. Thirty-seven QTLs for traits related to early maturity were identified by the composite interval mapping (CIM) method of Win QTLCart 2.5 in the F2–F2:3 of the two mapping populations. Positive alleles at these loci were mostly from early maturity ancestor 611-B and King cotton, respectively. In addition, most of the traits were controlled by different genes in the two sets of gene pools, showing primarily additive effects. Furthermore, in a natural population consisting of 43 different Upland cotton cultivars, 54 genetic loci significantly associated with early maturity related traits were detected through genome-wide association analysis, showing great comparability with the linkage mapping results. Our study provided insights into the genetic bases of early maturity and laid a foundation for early maturity gene pyramiding and marker-assisted selection of upland cotton.

Key words: Upland cotton, Early maturity gene, QTL mapping, Association analysis

[1]Zhou Y-H(周有耀). Study on the relationship between earliness and fiber quality in upland cotton. China Cotton (中国棉花), 1990, 17(5): 13–15 (in Chinese)



[2]Bie S(别墅), Zhou Y-Y(周有耀). Study on the genetic relationship between earliness and fiber quality in upland cotton. Acta Gossypii Sin (棉花学报), 1990, 2(2): 31–37 (in Chinese)



[3]Basbag S, Ekinci R, Gencer O. Combining ability and heterosis for earliness characters in line × tester population of Gossypium hirsutum L. Hereditas, 2007, 144: 185–190



[4]Zhu Q-H(朱乾浩), Yu B-X(俞碧霞), Xu F-H(许复华). Genetic analysis of yield traits in glandless cotton hybrids. Acta Gossypii Sin (棉花学报), 1994, 6(4): 215–220 (in Chinese with English abstract)



[5]Cheng H-L(承泓良), Yu S-X(喻树讯). Studies on the earliness Inheretance of upland cottons (Gossypium hirsutum L.). Acta Gossypii Sin (棉花学报), 1994, 6(1): 9–15 (in Chinese with English abstract)



[6]Li W-H(李卫华), Hu X-Y(胡新燕), Shen W-W(申温文), Song Y-P(宋玉萍), Xu J-A(徐加安), Li Q(李强). Genetic analysis of important economic traits in upland cotton (G. hirsutum L.). Acta Gossypii Sin (棉花学报), 2000, 12(2): 81–84 (in Chinese with English abstract)



[7]Godoy A S, Palomo G A. Genetic analysis of earliness in upland cotton (Gosspium hirsutum L.): I. Morphological and phonological variables. Euphytica, 1999, 105: 155–160



[8]Song M-Z(宋美珍), Yu S-X(喻树迅), Fan S-L(范术丽), Yuan R-H(原日红), Huang Z-M(黄祯茂). Genetic analysis of main agronomic traits in short season upland cotton (Gossypium hirsutum L.). Cotton Sci (棉花学报), 2005, 17(2): 94–98 (in Chiese with English abstract)



[9]Fan S-L(范术丽), Yu S-X(喻树迅), Yuan R-H(原日红), Song M-Z(宋美珍). Genetic effects and environmental interactions of early maturity in short-season cotton. Acta Bot Boreal-Occident Sin (西北植物学报), 2006, 26 (11): 2270–2275 (in Chinese with English abstract)



[10]Ai N-J(艾尼江), Zhu X-X(朱新霞), Guan R-Z(管荣展), Wan Y(万英), Zhang T-Z(张天真). Genetic analysis of major locus group of pre-frost lint yield in upland cotton. Acta Agron Sin (作物学报), 2010, 36(5): 736–743 (in Chinese with English abstract)



[11]Ai N-J(艾尼江), Zhu X-X(朱新霞), Guan R-Z(管荣展), Zhao J-J(赵建军), Zhang T-Z(张天真). Genetic analysis of major locus group constitutions of growth stages in upland cotton. Sci Agric Sin (中国农业科学), 2010, 43(20): 4140–4148 (in Chinese with English abstract)



[12]White T G. Diallel analysis of some quantitatively inherited characters in Gossypium hirsutum L. Crop Sci, 1966, 4: 253–255



[13]Yu S-X(喻树迅), Huang Z-M(黄祯茂). Genetic analysis on components of early maturity in short-season cotton varieties. Sci Agric Sin (中国农业科学), 1990, 23(6): 48–54 (in Chinese with English abstract)



[14]Ji D-F(季道藩), Wang R-H(汪若海), Pan J-J(潘家驹). Cotton Knowledge Encyclopedia (棉花知识百科). Beijing: China Agriculture Press, 2001 (in Chinese)



[15]Anjum R, Soomro A R, Chang M A. Measurement of earliness in upland cotton. Pakistan J Biol Sci, 2001, 4: 462–463



[16]Shakeel A, Azhar F M, Khan I A. Assessment of earliness in Gossypium hirsutum L. Pakistan J Agric Sci, 2008, 45: 80–87



[17]Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense, chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 138: 829–847



[18]Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome, 1999, 42: 184–203



[19]Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389–417



[20]Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004, 109: 167–175



[21]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genom, 2008, 9: 314



[22]Ulloa M, Meredith W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. Cotton Sci, 2000, 4: 161–170



[23]Ulloa M, Saha S, Jenkins J N, Meredith Jr W R, McCarty Jr J C, Stelly D M. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J Hered, 2005, 96: 132–144



[24]Shen X L, Guo W Z, Zhu X F, Yuan Y L, Yu J Z, Kohel R J, Zhang T Z. Molecular mapping of QTLs for qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed, 2005, 15: 169–181



[25]Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91–99



[26]Lin Z X, Zhang Y X, Zhang X L, Guo X P. A high-density integrative linkage map for Gossypium hirsutum. Euphytica, 2008, 166: 35–45



[27]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Liu K Y, Zhang T Z. A microsatellite-based gene-rich linkage map revels genome structure, function and evolution in Cossypium. Genetics, 2007, 176: 527–541



[28]Yu J, Kohel R J, Smit C W. The construction of a tetraploid cotton genome wide comprehensive reference map. Genomics, 2010, 95: 230–240



[29]Jiang C J, Pan X B, Gu M H. The use of mixture models to detect effects of major genes on quantitative characters in plant breeding experiment. Genetics, 1994, 136: 383–394



[30]Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL mapping of fiber quality in an elite hybrid derived-RILs in upland cotton. Euphytica, 2006, 152: 367–378



[31]Yang C(杨昶), Guo W-Z(郭旺珍), Zhang T-Z(张天真). QTL mapping for resistance to Verticillium wilt, fiber quality and yield traits in upland cotton (Gossypium hirsutum L.). Mol Plant Breed (分子植物育种), 2007, 5(6): 797–805 (in Chinese with English abstract)



[32]Qin H D, Guo W Z, Zhang Y M, Zhang T Z. QTL mapping of yield and fiber traits based on a four- way cross population in Gossypium hirsutum L. Theor Appl Genet, 2008, 117: 883–894



[33]Wang P, Su L, Qin L, Hu B, Guo W, Zhang T. Identification and molecular mapping of a Fusarium wilt resistant gene in upland cotton. Theor Appl Genet, 2009, 119: 93–103



[34]Zhang X-L(张先亮), Gao J-S(高俊山), Song G-L(宋国立), Liu F(刘方), Li S-H(黎绍惠), Liu K-F(刘克锋), Chu Z-Y(楚宗艳), Shao Y-Y(邵玉英), Wang K-B(王坤波). Additive and epistatic effects QTL analysis on upland cotton CRI-G6. Mol Plant Breed (分子植物育种), 2009, 7(2): 312–320 (in Chinese with English abstract)



[35]Fan S-L(范术丽), Yu S-X(喻树迅), Song M-Z(宋美珍), Yuan R-H(原日红). Construction of molecular linkage map and QTL mapping for earliness in short-season. cotton. Cotton Sci (棉花学报), 2006, 18(3): 135–139 (in Chinese with English abstract)



[36]Guo Y F, McCarty J C, Jenkins J N, An C F, Saha S. Genetic detection of node of first fruiting branch in crosses of a cultivar with two exotic accessions of upland cotton. Euphytica, 2009, 166: 317–329



[37]Nusrat O(努斯来提.吾斯曼), Yu S-X(喻树迅), Fan S-L(范术丽), Pang C-Y(庞朝友). Correlation of agronomic characters and QTL mapping in mechanical harvest cotton (Gossypium hirsutum L.). Xinjiang Agric Sci (新疆农业科学), 2012, 49(5): 791–795 (in Chinese with English abstract)



[38]Li C Q, Wang C B, Dong N, Wang X Y, Zhao H H, Richard C, Xia Z, Wang R, Wang Q L. QTL detection for node of ?rst fruiting branch and its height in upland cotton (Gossypium hirsutum L.). Euphytica, DOI 10.1007/s10681-012-0720-2



[39]Van Ooijen J W, Voorrips RE. JoinMap_ version 3.0: Software for the Calculation of Genetic Linkage Maps. Wageningen: Plant Research International, 2001



[40]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175



[41]Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton. Mol Gen Genet, 2004, 272: 308–327



[42]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527–541



[43]Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL mapping of fiber quality in an elite hybrid derived-RIL population of Upland Cotton. Euphytica, 2006, 152: 367–378



[44]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468



[45]McCouch S R, Cho Y G, Yano P E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13



[46]Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinform Appl Note, 2005, 9: 2128–2129



[47]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959



[48]Pritchard J K, Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet, 2001, 69: 1–14



[49]Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[5] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[10] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[11] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[12] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[13] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[14] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[15] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!