欢迎访问作物学报,今天是 2025年1月23日 星期四

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1727-1738.doi: 10.3724/SP.J.1006.2013.01727

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米再生相关基因ZmLEC1的序列变异及其与胚性愈伤组织形成能力的关联分析

李钊1,2,张登峰2,孙永华2,吴迅2,李永祥2,石云素2,宋燕春2,杨德光1,*,王天宇2,黎裕2,*   

  1. 1 东北农业大学农学院,黑龙江哈尔滨 150030;2 中国农业科学院作物科学研究所,北京 100081
  • 收稿日期:2013-01-28 修回日期:2013-06-02 出版日期:2013-10-12 网络出版日期:2013-08-01
  • 通讯作者: 杨德光, E-mail: ydgl@tom.com; 黎裕, E-mail: liyu03@caas.cn, Tel: 010-62131196
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2011ZX08010-004)资助。

Sequence Diversity of ZmLEC1 and Association Analysis of Embryogenic calli Formation Ability in Maize

LI Zhao1,2,ZHANG Deng-Feng2,SUN Yong-Hua2,WU Xun2,LI Yong-Xiang2,SHI Yun-Su2,SONG Yan-Chun2,YANG De-Guang1,*,WANG Tian-Yu2,LI Yu2,*   

  1. 1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China;2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-01-28 Revised:2013-06-02 Published:2013-10-12 Published online:2013-08-01
  • Contact: 杨德光, E-mail: ydgl@tom.com; 黎裕, E-mail: liyu03@caas.cn, Tel: 010-62131196

摘要:

95份玉米微核心种质和3份常用玉米转基因受体材料(A188HiII和综31)组成的关联作图群体,对玉米再生相关候选基因ZmLEC1进行序列变异分析,并利用候选基因关联分析策略揭示该基因与胚性愈伤组织形成能力的关系,发掘提高胚性愈伤组织形成能力的有益等位变异。结果表明,不同材料之间的幼胚胚性愈伤组织形成能力和再生能力有显著差异,其中粤267-1-1诱导的愈伤组织和国际上普遍利用的HiII极为相似,胚性愈伤组织率达到98.48%,可以用于幼胚的遗传转化。ZmLEC1基因多态性分析表明,在852 bp编码区内共发现33SNPs9INDELsLD衰减距离为300 bp (R2=0.1)ZmLEC1基因中4个多态性位点与胚性愈伤组织形成能力存在显著关联。

关键词: 玉米, ZmLEC1, 胚性愈伤组织, 关联分析

Abstract:

A maize association mapping population consisted of a mini core collection of ninety-five maize inbred lines and three elite maize accessions (A188, HiII, and Zong 31)usually for genetic transformation was used to analyze the sequence diversity and linkage disequilibrium (LD) of ZmLEC1, a candidate gene of regeneration ability in maize. A candidate gene association strategy was used to reveal the relationship between this gene and embryogenic calli formation ability and discover favorable alleles and genotypes enhancing the embryogenic calli formation ability. The results showed that there existed significant differences in abilities of embryogenic calli formation and regeneration among these accessions. The calli induced from Yue267-1-1 were very similar to those of HiII, the popularly used genotype in maize transformation. Yue267-1-1 had the highest ability of embryogenic calli formation and regeneration and could be a new germplasm for immature embryo-based genetic transformation. The result of sequence polymorphism analysis of ZmLEC1 showed that there were thirty-three SNPs and nine InDels in the coding region of 852 bps. The LD between all of the informative polymorphisms decayed rapidly to about 300 bp at R2=0.1. Totally four polymorphic sites in the ZmLEC1 gene were significantly associated with embryogenetic calli formation ability.

Key words: Zea mays, ZmLEC1, Embryogenetic callus, Association analysis

[1]Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS KINASE 1 is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127: 803–816



[2]Nishimura A, Ashikari M, Lin S Y, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA, 2005, 102:11940–11944



[3]Ozawa K, Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci, 2006, 170:384–393



[4]Tromas A, Paponov I, Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Trends Plant Sci, 2010, 15:436–446



[5]Sauter M, Wiegen P, Lörz H, Kranz E. Cell cycle regulatory genes from maize are differentially controlled during fertilization and first embryonic cell division. Sexual Plant Reprod, 1998, 11: 41–48



[6]Meinke D W,Franzmann L H,Nickle T C,Yeung E C.Leafy cotyledon mutants of Arabidopsis. Plant Cell, 1994, 6:1049–1064



[7]Lotan T, Ohto M, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93:1195–1205



[8]Zhang S, Wong L, Meng L, Lemaux P G. Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize ( Zea mays L.). Planta, 2002, 215:191–194



[9]Duncan D R, Williams M E, Zehr B E, Widholm J M. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta. 1985, 165:322–332



[10]Bolibok H, Rakoczy-Trojanowska M. Genetic mapping of QTLs for tissue culture response in plants. Euphytica, 2006, 149: 73–83_



[11]Armstrong C L , Romero-Severson J, Hodges T K. Improved tissue culture response of an elite maize inbred through back cross breeding , and identification of chromosomal regions important f or regene ration by RFLP analysis. Theor Appl Genet, 1992, 84: 755–762



[12]Krakowsky M D , Lee M, Garay L. Quantitative trait loci for callus initiation in maize (Zea mays L.). Theor Appl Genet, 2006, 113: 821–830 _



[13]Zhang H-W(张红伟), Liu Y-J(刘亚娟), Guo X-L(郭晓琳), Zhang F(张峰),Li J-S(李建生), Chen G(陈刚),Sun D-F(孙东发), Tan Z-B(谭振波). QTL mapping for callus induction and plant regeneration in maize immature embryos. Acta Agrono Sin(作物学报), 2006, 32(3): 385–389 (in Chinese with English abstract)



[14]Ye X-G(叶兴国), She M-Y(佘茂云), Wang K(王轲), Du L-P(杜丽璞), XU H-J(徐惠君). Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agrono Sin(作物学报), 2012, 38(2): 191–201(in Chinese with English abstract)



[15]Yang X-H(杨小红), Yan J-B(严建兵), Zheng Y-P(郑艳萍), Yu J-M(余建明), Li J-S(李建生). Reviews of association analysis for quantitative traits in plants. Acta Agrono Sin(作物学报), 2007, 33(4): 523–530(in Chinese with English abstract)



[16]Wang R-H(王荣焕), Wang T-Y(王天宇), Li Y(黎裕). Linkage disequilibrium in plant genomes. Hereditas(遗传), 2007, 29(11): 1317–1321(in Chinese with English abstract)



[17]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289



[18]Palaisa K A, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell, 2003, 15: 1795–1806



[19]Wilson L M, Whitt S R, Iba´n˜ez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004, 16: 2719–2733



[20]Szalma S J, Buckler E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet, 2005, 110: 1324–1333



[21]Andersen J R, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet, 2006, 114: 307–319



[22]Yan J B, Brutnel T, Kandianis C B, Harjes C E, Bai L,Kim E H, Yang X H, Skinner D J, Fu Z Y, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R,Fu Y, Palacios N, Li J S, DellaPenna D, Brutnell T, Buckler E S, Warburton M L, Rocheford T. Rare genetic variation at Zea mays crtRB1 increases carotene in maize grain. Nat Genet, 2010, 42: 322–327



[23]Wang R H, Yu Y T, Zhao J R, Shi Y S, Song Y C, Wang T Y, Li Y. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet, 2008, 117: 1141–1153 



[24]Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nat Protoc, 2007, 2: 1614–1621



[25]Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164: 207–214



[26]Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The ClustalX windows interface: flexible strategies of multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882



[27]Rozas J, Sanchez-DelBarrio J C, Messeguer X. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19:2496–2497



[28] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinform Appl Note, 2007, 23: 2633–2635 



[29] Zhao Z-Y, Gu W N, Cai T S, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D. High throughput genetic transformtion mediated by Agrobacterum trmefaciens in maize. Mol Breed, 2001, 8: 323–333



[30] Ishida Y, Saito H, Hiei Y, Komari T. Improved protocol for transformation of maize(Zea Maize L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol, 2003, 20: 57–66



[31] Wang Z-Y(王章英). Isolation and Characterization of Maize Endosperm AGPase Mutants and Improving Maize Starch Content by Using Genetic Engineering. PhD Dissertation of China Agricultura University, 2006(in Chinese with English abstract)



[32] Liang G-D(梁广东), Di H(邸宏), Lu C-H(卢翠华), Zhang L(张林), Dong L(董玲), Wang Z-H(王振华), Jiang L-L(姜丽丽), Zhou Y(周羽). Study onimmature embryos regeneration of maize inbred lines. J Northeast Agric Univ(东北农业大学学报), 2010, 41(2): 11–14(in Chinese with English abstract)



[33] Hu Y-M(胡彦民), Tang J-H(汤继华), Liu Z-H(刘宗华), Ji H-Q(季洪强), Shi H-L(史红丽), Ji L-Y(季良越). Selection of the genotypes of high plant regeneration frequency from immature embryo calli in maize. Henan Sci(河南科学), 2004, 22(1): 63–66(in Chinese with English abstract)



[34] Wang H-N(王汉宁), Zhang J-W(张金文), Kong W-P(孔维萍), Feng Y-L(冯玉兰). Callus initiation and regeneration from immture embryos of maize. J Maize Sci(玉米科学), 2006, 14(5): 71–73(in Chinese with English abstract)



[35] Wu H(吴红), Xie S-Z(谢树章), Lin Q(林清), Lei K-R(雷开荣),  Qiu Z-G(邱正高), Zhang Y-Q(张亚勤), Wang N(王楠), Zhou Y-K(周幼昆). Study on callus induction and plantlet regeneration from immature embyro among different maize inbreds.Acta Agric Southwest (西南农业学报), 2012, 25(2): 385–389(in Chinese with English abstract)



[36] Mu G-Q(母贵琴), Pan G-T(潘光堂), Liu Y-Z(刘玉贞), Xia Y-L(夏燕莉). Preliminary study on maize genotypes and the establishment of embryogenic callus. J Sichuan Agric Univ(四川农业大学学报), 2003, 21(1): 13–17(in Chinese with English abstract)



[37] Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, Rafalski A J. SNP frequency haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2003, 3: 1–14



[38] Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A. Linkage disequilibrium and sequence diversity in a 500-kb region around the adh1 locus in elite maize germplasm. Theor Appl Genet, 2004, 109: 681–689



[39] Nordborg M. Linkage disequilibrium, gene trees and sel?ng: an ancestral recombination graph with partial self-fertilization. Genetics ,2000, 154: 923–929



[40] Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001, 98: 11479–11484



[41] Tenaillon M I, Sawkins M C, Long A D, Long R L, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA, 2001, 98: 9161–9166

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
Viewed
Full text
771
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 771

  From Others local
  Times 31 740
  Rate 4% 96%

Abstract
317
Just accepted Online first Issue
0 0 317
  From Others local
  Times 47 270
  Rate 15% 85%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!