作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1927-1934.doi: 10.3724/SP.J.1006.2013.01927

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 江苏里下河地区农业科学研究所 / 国家水稻改良中心南京分中心扬州试验站,江苏扬州225007;2扬州大学植物功能基因组学教育部重点实验室,江苏扬州225009;3江苏丘陵地区镇江农业科学研究所,江苏句容212400
  • 收稿日期:2013-03-21 修回日期:2013-06-24 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 李爱宏, E-mail: yzlah@126.com; Tel: 0514-87302340
  • 基金资助:


Resistance Spectrum Difference between Two Broad-spectrum Blast Resistance Genes, Pigm and Pi2, and Their Interaction Effect on Pi1

YU Miao-Miao1,2,3,DAI Zheng-Yuan1,PAN Cun-Hong1,CHEN Xi-Jun2,YU Ling1,ZHANG Xiao-Xiang1,LI Yu-Hong1,XIAO Ning1,GONG Hong-Bing3,SHENG Sheng-Lan3,PAN Xue-Biao2,ZHANG Hong-Xi1,LI Ai-Hong1,*   

  1. 1 Lixiahe Agricultural Research Institute of Jiangsu Province / Yangzhou Station of Nanjing Sub-center of National Rice Improvement Center, Yangzhou 225007, China; 2 Key Laboratory of Plant Functional Genomics, Ministry of Education, Yangzhou University, Yangzhou 225009, China; 3 Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Region, Jurong 212400, China
  • Received:2013-03-21 Revised:2013-06-24 Published:2013-11-12 Published online:2013-08-12
  • Contact: 李爱宏, E-mail: yzlah@126.com; Tel: 0514-87302340



关键词: 稻瘟病抗性基因, 标记辅助选择, 近等基因系, 抗谱, 互作效应


Pigm, an R gene to rice blast disease, is either allelic or tightly linked to Pi2. In this study, a series of near-isogenic lines (NILs) containing Pigm and Pi2 under four genetic backgrounds of rice cultivars were established, respectively. The results from inoculating with 204 representative races at seedling stage showed that the resistance frequency of NILs carryingPigm and Pi2 all reachedmore than70%, but the overlapping degree of resistance spectrum between them was only 54.4% to 65.7%, and the resistance frequencyof hybrids pyramiding Pi1/Pigm and Pi1/Pi2 was more than 90%. Disease development from artificial inoculation at heading stage and natural induction in disease nursery showed consistent trend with that from inoculation at seedling stage. Agronomic traits of most NILs were similar to those of recurrent parent, indicating that the target region contains few linkage drags. In conclusion, Pigm is a broad-spectrum blast resistance gene possessing significant resistance spectrum difference from Pi2, and holds important value for rice blast breeding.

Key words: Blast resistance gene, Marker-assisted selection, Near-isogenic lines, Resistance spectrum, Interaction effect

[1] Liu G, Lu G, Zeng L, Wang G L. Two broad-spectrum blast resistance genes Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics, 2002, 267: 472–480

[2] Ahn S N, Kim Y K, Hong H C, Han S S, Kwon S J, Choi H C, Moon H P, McCouch S R. Molecular mapping of a new gene for resistance to rice blast (Pyricularia grisea Sacc.). Euphytica, 2000, 116: 17–22

[3] Wu J L, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet, 2005, 111: 50–56

[4] Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 2007, 115: 1163–1177

[5] Zhu X Y, Chen S, Yang J Y, Zhou S C, Zeng L X, Han J L, Su J, Wang L, Pan Q H. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet, 2012, 124: 1295–1304

[6] Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast genes. Theor Appl Genet, 2006, 113: 251–260

[7] Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901–1914

[8] Deng Y W, Zhu X D, Shen Y, He Z H. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet, 2006, 113(4): 705–713

[9] Chen Z-W(陈志伟), Guan H-Z(官华忠), Wu W-R(吴为人), Zhou Y-C(周元昌), Han Q-D(韩庆典). The screening of molecular markers closely linked to rice blast resistant gene Pi-1 and their application. J Fujian Agric For Univ (Nat Sci Edn) (福建农林大学学报•自然科学版), 2005, 34(1): 74–77 (in Chinese with English abstract)

[10] Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047–1055

[11] Chen H-Q(陈红旗), Chen Z-X(陈宗祥), Ni S(倪深), Zuo S-M(左示敏), Pan X-B(潘学彪), Zhu X-D(朱旭东). Pyramiding three genes with resistance to blast by marker-assisted selection to improve rice blast resistance of Jin 23B. Chin J Rice Sci (中国水稻科学), 2008, 22(1): 23–27 (in Chinese with English abstract)

[12] Liu W-G(柳武革), Wang F(王丰), Jin S-J(金素娟), Zhu X-Y(朱小源), Li J-H(李金华), Liu Z-R(刘振荣), Liao Y-L(廖亦龙), Zhu M-S(朱满山), Huang H-J(黄慧君), Fu F-H(符福鸿), Liu Y-B(刘宜柏). Improvement of rice blast resistance in TGMS line by pyramiding of Pi-1 and Pi-2 through molecular marker-assisted selection. Acta Agron Sin (作物学报), 2008, 34(7): 1128–1136 (in Chinese with English abstract)

[13] Jiang H C, Feng Y T, Bao L, Li X, Gao G J, Zhang Q L, Xiao J H, Xu C G, He Y Q. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. 2012, 30: 1679–1688

[14] Lu Y-J(卢扬江), Zheng K-L(郑康乐). A simple method for extracting rice DNA. Chin J Rice Sci (中国水稻科学), 1992, 6(1): 47–48 (in Chinese with English abstract)

[15] Hospital F, Chevalet C, Mulsant P. Using markers in gene introgression breeding programs. Genetics, 1992, 132: 1199–1210

[16] Zhou Y-J(周益军), Fan Y-J(范永坚), Wu S-H(吴淑华), Lu Z-X(陆振晓), Cheng Z-B(程兆榜). Identification techniques of rice blast fungus races by in vitro inoculation and artificial mutation of their phthogenicity. Jiangsu Agric Res (江苏农业研究), 1999, 20(1): 34–38 (in Chinese with English abstract)

[17] Luo C-P(罗楚平), Ni L(倪磊), Chen Z-Y(陈志谊), Liu Y-F(刘永锋), Liu Y-Z(刘邮洲), Nie Y-F(聂亚锋). Inoculation and identification techniques for rice blast and resistance screening of cultivars from Jiangsu rice regional test in 2009. Jiangsu Agric Sci (江苏农业科学), 2009, (6): 178–179 (in Chinese with English abstract)

[18] Zhang L(张磊), Zhang Q-J(张启军), Cheng Z-B(程兆榜), Yang H(杨豪), Zhou Y-J(周益军), Lü C-G(吕川根). Resistances of four sets of rice varieties to 19 strains of magnaporthe griseas in Jiangsu area. Jiangsu J Agric Sci (江苏农业学报), 2010, 26(5): 948–953 (in Chinese with English abstract)

[19] Chen F-R(陈福如), Ruan H-C(阮宏椿), Yang X-J(杨秀娟), Lin S-C(林时迟), Fang Q(方琴), Yan Y(严琰). The correlation in seeding blast, leaf blasts and neck blasts of rice. Chin Agric Sci Bull (中国农学通报), 2006, 22(7): 440–443 (in Chinese with English abstract)

[20] Zhang X-T(张学堂), Liao X-H(廖新华), Zhu Z-H(朱振华), Su Z-X(苏振喜), Shi R(世荣), Zhao G-Z(赵国珍), Jiang C(蒋聪), Dai L-Y(戴陆园). Applications of Pi-z, Pi-ta2 genes in Japonica rice breeding with blast resistane in Yunnan. J Agric Sci Technol (中国农业科技导报), 2010, 12(1): 100–105 (in Chinese with English abstract)

[21] Islam M R, Shepherd K W. Present status of genetics of rust resistance in flax. Euphytica, 1991, 55: 255–267

[22] Ellis J G, Lawrence G J, Finnegan E J, Anderson P A. Contrasting complexity of two rust resistance loci in flax. Proc Natl Acad Sci USA, 1995, 92: 4185–4188

[23]Yang Z, Sun X, Wang S P, Zhang Q F. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106: 1467–1472

[24] Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 2006, 19: 1216–1228

[25] Dai L, Wu J, Li X, Wang X, Liu X, Jantasuriyarat C, Kudrna D, Yu Y, Wing R A, Han B. Genomic structure and evolution of the Pi2/9 locus in wild rice species. Theor Appl Genet, 2010, 121: 295–309

[26] Yang J-Y(杨健源), Chen S(陈深), Zeng L-X(曾列先), Li Y-L(李亦龙), Chen Z(陈珍), Zhu X-Y(朱小源). Evaluation on resistance of major rice blast resistance genes to agnaporthe grisea isolates collected from indica rice in Guangdong Province. Chin J Rice Sci (中国水稻科学), 2008, 22(2): 190–196 (in Chinese with English abstract)

[27] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamanoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473–2483

[1] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[2] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[3] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[4] 郭清云, 蒯婕, 汪波, 刘芳, 张椿雨, 李根泽, 张云云, 傅廷栋, 周广生. 感抗油菜近等基因系混播对根肿病发病率的影响[J]. 作物学报, 2020, 46(9): 1408-1415.
[5] 郭清云, 汪波, 蒯婕, 张椿雨, 李根泽, 康惠仙, 傅廷栋, 周广生. 油菜感抗品种混播对根肿病防控效果的影响[J]. 作物学报, 2020, 46(5): 725-733.
[6] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[7] 胡茂龙, 程丽, 郭月, 龙卫华, 高建芹, 浦惠明, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因标记的开发与应用[J]. 作物学报, 2020, 46(10): 1639-1646.
[8] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
[9] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[10] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[11] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[12] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[13] 代资举,王新涛,杨青,王艳,张莹莹,席章营,李保全. 玉米雄穗分枝数主效QTL定位及qTBN5近等基因系构建[J]. 作物学报, 2018, 44(8): 1127-1135.
[14] 李玉玲,蒋正宁,胡文静,李东升,程婧晔,裔新,程晓明,吴荣林,程顺和. CIMMYT小麦种质C615抗叶锈病QTL分析[J]. 作物学报, 2018, 44(6): 836-843.
[15] 田宇,杨蕾,李英慧,邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用[J]. 作物学报, 2018, 44(11): 1600-1611.
Full text



No Suggested Reading articles found!