欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1917-1926.doi: 10.3724/SP.J.1006.2013.01917

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

中国大豆主产区不同年代大面积种植品种的遗传多样性分析

王彩洁1,2,孙石1,金素娟1,3,李伟2,吴存祥1,侯文胜1,韩天富1, *   

  1. 1中国农业科学院作物科学研究所 / 农业部北京大豆生物学重点实验室,北京 100081;2山东省农业科学院作物研究所,山东济南 250100;3石家庄市农林科学研究院,河北石家庄 050041
  • 收稿日期:2013-04-10 修回日期:2013-06-24 出版日期:2013-11-12 网络出版日期:2013-08-14
  • 通讯作者: 韩天富, E-mail: hantianfu@caas.cn, Tel: 010-82105875
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-04)和国家重点基础研究发展计划(973计划)项目(2009CB118404)资助。

Genetic Diversity Analysis of Widely-planted Soybean Varieties from Different Decades and Major Production Regions in China

WANG Cai-Jie1,2,SUN Shi1,JIN Su-Juan1,3,LI Wei2,WU Cun-Xiang1,HOU Wen-Sheng1,HAN Tian-Fu1,*   

  1. 1 Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture / Institute of Crop Science,Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China
  • Received:2013-04-10 Revised:2013-06-24 Published:2013-11-12 Published online:2013-08-14
  • Contact: 韩天富, E-mail: hantianfu@caas.cn, Tel: 010-82105875

摘要:

利用与大豆产量、品质、抗逆性、适应性等重要性状相关的125SSR标记对中国大豆主产区东北和黄淮海地区自20世纪40年代以来大面积种植的89个大豆品种进行遗传多样性分析。结果表明,自北向南大面积种植品种SSR标记的多态性呈逐渐升高的趋势,黑龙江北部、黑龙江中南部、吉林辽宁地区和黄淮海地区大面积种植品种标记的多态性信息含量(PIC)依次为0.4140.4690.5220.562。除黑龙江北部以外,其余3个地区20世纪80年代以来大面积种植品种的多态性信息含量均比80年代以前种植的品种高。根据NeiLi提出的遗传相似系数对供试品种进行聚类分析,发现除黄淮海北部地区的冀豆12外,东北和黄淮海地区大面积种植品种各自聚成一类,而在东北地区品种中,吉林辽宁和黑龙江地区的品种归属不同亚类,表明同一区域内大面积种植品种的同质化现象相当明显。

关键词: 大豆大面积种植品种, SSR标记, 遗传多样性, 多态性信息含量

Abstract:

The genetic diversity of widely-planted soybean varieties released after 1940s in Northeast China and Yellow-Huai-Hai Rivers Valley (YHH)were analyzed by 125 simple sequence repeats (SSR) markers, which were related to the important traits including yield, quality, stress tolerance and adaptability. The results showed that the average polymorphism information content (PIC) from north part of Heilongjiang province, south and middle parts of Heilongjiang province, Jilin and Liaoning provinces and Yellow-Huai-Hai Rivers Valley were 0.414, 0.469, 0.522, and 0.562, respectively. Except for the varieties from the north part of Heilongjiang province, the varieties released after 1980 in the other three regions had higher PIC than those released before 1980. Based on similarity proposed by Nei and Li, we classified the tested soybean varieties into three major groups by the cluster analysis, corresponding with the original places of the varieties. The varieties from the Northeast and YHH were classified into two major groups respectively, except for Jidou 12, a variety from northern YHH, which was classified into an independent group. In the Northeast, varieties of Heilongjiang were classified into one subgroup and those from Jilin and Liaoning provinces another subgroup, indicating that the widely-planted varieties from the same region were apparently homogenized.

Key words: Soybean, Widely-planted variety, SSR markers, Genetic diversity, Polymorphism information content (PIC)

[1]Cui Z-L(崔章林), Gai J-Y(盖鈞镒), Carter T E, Qiu J-X(邱家驯), Zhao T-J(赵团结). The Released Chinese Soybean Cultivars and Their Pedigree Analyses (1923–1995))[中国大豆育成品种及其系谱分析(1923–1995)]. Beijing: China Agriculture Press, 1998. pp 23–311 (in Chinese)



[2]Xiong D-J(熊东金), Zhao T-J(赵团结), Gai J-Y(盖鈞镒). Parental analysis of soybean cultivars released in China. Sci Agric Sin (中国农业科学), 2008, 41(9): 2589–2598 (in Chinese with English abstract)



[3]National Soybean Industrial R&D System (国家大豆产业技术体系). Annual Report of Soybean Industrial Technology in 2011. Department of Science, Technology and Education of Ministry of Agriculture, Department of Education, Science and Culture of Ministry of Finance. Annual Report of Agricultural Industrial Technology in China (2011). Beijing: China Agriculture Press. 2012, (in press)(in Chinese)



[4]National Soybean Industrial R&D System (国家大豆产业技术体系). Annual Report of Soybean Industrial Technology in 2012. Department of Science, Technology and Education of Ministry of Agriculture, Department of Education, Science and Culture of Ministry of Finance. Annual Report of Agricultural Industrial Technology in China (2011). Beijing: China Agriculture Press, 2013, (in press)(in Chinese)



[5]Hu M-X(胡明祥). Achievement and outlook of soybean breeding in China. Soybean bull (大豆通报), 1993, 5(6): 23–24 (in Chinese)



[6]Jin J(金剑), Wang G-H(王光华), Liu X-B(刘晓冰), Mi L(米亮), Du J-L(杜金岭). Agronomic changes of soybean cultivars released during 1950 to 2006 in Heilongjiang Province. J Zhejiang Univ (Agric Life Sci Edn)(浙江大学学报?农业与生命科学版), 2008, 34 (3): 296–302 (in Chinese with English abstract)



[7]Zheng H-B(郑洪兵), Liu W-R(刘武仁), Zheng J-Y(郑金玉), Luo Y(罗洋), Li W-T(李伟堂), Xu K-Z(徐克章), Lu J-M(陆静梅). Progress of studies on some agronomic traits of soybean in genetic improvement. J Jilin Agric Sci (吉林农业科学), 2008, 33(2): 13–16 (in Chinese)



[8]Wang C-J(王彩洁), Sun S(孙石), Wu B-M(吴宝美), Chang R-Z(常汝镇), Han T-F(韩天富). Pedigree analysis of widely-planting soybean varieties in China since 1940s. Chin J Oil Crop Sci (中国油料作物学报), 2013, 35: in press (in Chinese with English abstract)



[9]Song Q-J(宋启建). A review of development and application of simple sequeence repeat (SSR) in soybean. Soybean Sci (大豆科学), 1999, 16(3): 248-254 (in Chinese with English abstract)



[10]Li Y H, Li W, Zhang C,Yang L, Chang R Z, Brandon S G, Qiu L J. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism. New Phytol, 2010, 188 : 242–253



[11]Iquira E, Gagnon E, Belzile F. Comparison of genetic diversity between Canadian adapted genotypes and exotic germplasm of soybean. Genome, 2010, 53: 337–345



[12]Mikel M A, Diers B W, Nelson R L, Smith H H. Genetic diversity and agronomic improvement of North American soybean germplasm. Crop Sci, 2010, 50: 1219–1229



[13]Doyle J J, Doyle J I. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 149–151



[14]Reyna N, Sneller C H. Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Sci, 2001, 41: 1317–1321



[15]Wang G L, Graef A M, Procopiuk B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004, 108: 458–467



[16]Li D D, Pfeifer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008, 48: 571–581



[17]Josie J, Alcivar A, Rainho J, Kassem M A. Genomic regions containing QTL for plant height, internodes length, and flower color in soybean [Glycine max (L.) Merr.]. BIOS, 2007, 78(4): 119–126



[18]Huang Z-W(黄中文), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Lodging resistance indices and related QTLs in soybean. Acta Agron Sin (作物学报), 2008, 34(4): 605–611 (in Chinese with English abstract)



[19]Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕), Xin D-W(辛大伟), Shan D-P(单大鹏), Qiu H-M(邱红梅), Shan C-Y(单彩云). QTL analysis of major agronomic traits in soybean. Sci Agric Sin (中国农业科学), 2007, 40(1): 41–47 (in Chinese with English abstract)



[20]Tasma M I, Shoemaker R C. Mapping flowering time gene homolos in soybean and their association with maturity (E) loci. Crop Sci, 2003, 43: 319–328



[21]Tasma I M, Lorenzen L, Green D E, Shoemarker R C. Mapping genetic loci for flowering times, maturity and photoperiod insensitivity in soybean. Mol Breed, 2001, 8: 25–35



[22]Fasoula V A, Harris D K, Boerma.H R. Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci, 2004, 44: 1218–1225



[23]Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci, 2005, 45: 2015–2022



[24]Panthee D R, Pantalone V R, Saxton A M, West D R, Sams C E. Genomic regions associated with amino acid composition in soybean. Mol Breed, 2006, 17: 79–89



[25]Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonuleases. Proc Natl Acad Sci USA, 1979, 76: 5269–5273



[26]Rohlf F J. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System, version 2.1. Exeter Software, NY, 2000



[27]Luan W-J(栾维江), Liu Z-X(刘章雄), Guan R-X(关荣霞), Chang R-Z(常汝镇), He B-R(何蓓如), Qiu L-J(邱丽娟). Representativeness of northeast China spring soybeans and their genetic diversity at SSR loci. Chin J Appl Ecol (应用生态学报), 2005, 16(8): 1469–1476 (in Chinese with English abstract)



[28]Zhao H-K(赵洪锟), Wang Y-M(王玉民), Li Q-Y(李启云), Zhang M(张明), Zhuang B-C(庄炳昌). SSR analysis of wild soybean (G. Soja) and cultivated soybean from different latitude in China. Soybean Sci (大豆科学), 2001, 20(3): 172–176 (in Chinese with English abstract)



[29]Gai J-Y(盖钧镒), Cui Z-L(崔章林). Ancestral analysis of soybean cultivars in China. J Nanjing Agric Univ (南京农业大学学报), 1994, 17(3): 19–23 (in Chinese)



[30]Gao Y-L(高运来), Yao B-C(姚丙晨), Liu C-Y(刘春燕), Li W-F(李文福), Jiang H-W(蒋洪蔚), Li C-D(李灿东), Zhang W-B(张闻博), Hu G-H(胡国华), Chen Q-S(陈庆山). Genetic diversity analysis by simple sequence repeats of soybean (Glycine max) varieties from Heilongjiang. Chin Bull Bot (植物学报), 2009, 44 (5): 556–561 (in Chinese with English abstract)



[31]Wang L X, Guan R X, Liu Z X, Chang R Z, Qiu L J. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci, 2006, 46: 1032–1038



[32]Wang M, Li R Z, Yang W M, Du W J. Assessing the genetic diversity of varieties and wild soybeans using SSR markers. Afric J Biotech, 2010, 9(31): 4857–4866



[33]Diwan N, Cregan P B. Automated sizing of fluorescent labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet, 1997, 95: 723–733



[34]Chen Y, Wang D, Arelli P, Ebrahimi M, Nelson R L. Molecular marker diversity of SCN-resistant sources in soybean. Genome, 2006, 49: 938–949



[35]Hwang T Y, Nakamoto Y, Kono I, Enoki H, Funatsuki H, Kitamura K, Ishimoto M. Genetic diversity of cultivated and wild soybeans including Japanese elite varieties as revealed by length polymorphism of SSR markers. Breed Sci, 2008, 58: 315–323



[36]Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, and Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, 109: E2155-E2164



[37]Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188: 260–395



[38]Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182: 1251–1262



[39]Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008, 180: 995–1007



[40]Kong F, Liu B, Xia Z, Sato S, Kim B, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1220–1231



[41]Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS ONE, 2011, 6(12): e29238

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[5] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[6] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[7] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[8] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[9] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[10] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[11] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[12] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[13] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[14] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[15] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!