欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (01): 1-6.doi: 10.3724/SP.J.1006.2014.00001

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

玉米穗行数全基因组关联分析

张焕欣,翁建峰*,张晓聪,刘昌林,雍洪军,郝转芳,李新海*   

  1. 中国农业科学院作物科学研究所 / 作物分子育种国家工程实验室,北京100081
  • 收稿日期:2013-06-19 修回日期:2013-09-16 出版日期:2014-01-12 网络出版日期:2013-10-22
  • 通讯作者: 翁建峰, E-mail: jfweng@126.com; 李新海, E-mail: lixinhai@caas.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31201219)和国家重点基础研究发展计划(973计划)项目(2011CB100106)资助。

Genome-wide Association Analysis of Kernel Row Number in Maize

ZHANG Huan-Xin,WENG Jian-Feng*,ZHANG Xiao-Cong,LIU Chang-Lin,YONG Hong-Jun,HAO Zhuan-Fang,LI Xin-Hai*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Engineer Laboratory of Crop Molecular Breeding, Beijing 100081, China
  • Received:2013-06-19 Revised:2013-09-16 Published:2014-01-12 Published online:2013-10-22
  • Contact: 翁建峰, E-mail: jfweng@126.com; 李新海, E-mail: lixinhai@caas.cn

摘要:

穗行数是玉米产量的重要组成性状,其遗传解析对高产育种具有指导意义。本文以203份主要玉米自交系为材料,2007年在新疆乌鲁木齐、吉林公主岭和海南三亚进行穗行数测定;采用分布于玉米基因组的41 101个单核苷酸多态性(SNP)标记对穗行数进行关联分析。共鉴定出9个与穗行数显著关联(P < 0.0001)SNP分别位于染色体框1.021.107.038.029.0610.038SNP位于已定位的数量性状座位(QTL)区间内。在显著SNP位点LD区域内发掘出4个候选基因,分别编码含F-box结构域的生长素受体蛋白、玉米kn1蛋白、AP2结构域蛋白和富亮氨酸重复的跨膜蛋白激酶。采用全基因组关联分析策略发掘穗行数基因位点及候选基因,将为克隆控制玉米产量性状基因奠定基础。

关键词: 玉米, 穗行数, 全基因组关联分析, 候选基因

Abstract:

Kernel row number (KRN) is one of grain yield components in maize (Zea mays L.). Investigation of its genetic architecture will help develop high-yield varieties in maize. In this study, the KRN in a panel of 203 maize inbred lines was detected in Urumqi of Xinjiang, Gongzhuling of Jilin, and Sanya of Hainan in 2007, and used to perform the genome-wide analysis for KRN using MaizeSNP50 BeadChip. A total of nine SNPs were found to be significantly associated with KRN at a threshold of P < 0.0001, which were on chromosome Bins 1.02, 1.10, 7.03, 8.02, 9.06, and 10.03, respectively. Eight of these SNPs were located in the QTL intervals reported previously.Meanwhile, four candidate genes were scanned, encoding auxin signaling F-box containing protein, kn1 protein, AP2 domain containing protein and leucine-rich repeat transmembrane protein kinase respectively. In summary, these identified genes and SNPs will offer essential information for cloning yield-related genes in maize.

Key words: Maize, Kernel row number, Genome-wide association analysis, Candidate gene

[1]Kerstetter R A, Laudencia-Chingcuanco D, Smith L G, Hake S. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development, 1997, 124: 3045–3054



[2]Dhillon BS, Singh J. Estimation and inheritance of stability parameters of grain yield in maize. J Agric Sci, 1977, 88: 257–265



[3]Lima M L A, Souza C L, Bento D A V, Souza A P, Carlini-Garcia L A. Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed, 2006, 17: 227–239



[4]Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed, 2007, 20: 41–51



[5]Lu M, Xie C X, Li X H, Hao Z F, Li M S, Weng J F, Zhang D G, Bai L, Zhang S H. Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breed, 2010, 28: 143–152



[6]Guo J J, Chen Z L, Liu Z P, Wang B B, Song W B, Li W, Chen J, Dai J G, Lai J S. Identification of genetic factors affecting plant density response through QTL mapping of yield component traits in maize (Zea mays L.). Euphytica, 2011, 182: 409–422



[7]谭巍巍, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 王迪, 张岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕. 在干旱和正常水分条件下玉米穗部性状QTL分析. 作物学报, 2011, 37: 235–248



Tan W W, Li Y X, Wang Y, Liu C, Liu Z Z, Peng B, Wang D, Zhang Y, Sun B C, Shi Y S, Song Y C, Yang D G, Wang T Y, Li Y. QTL mapping of ear traits of maize under different water regimes. Acta Agron Sin, 2011, 37: 235–248 (in Chinese with English abstract)



[8]江培顺, 张焕欣, 李博, 郝转芳, 吕香玲, 李明顺, 王宏伟, 慈晓科, 张世煌, 李新海, 翁建峰, 史振声. 玉米产量相关性状Meta-QTL及候选基因分析. 作物学报, 2013, 39: 969–978



Jiang P S, Zhang H X, Li B, Hao Z F, Lü X L, Li M S, Wang H W, Ci X K, Zhang S H, Li X H, Weng J F, Shi Z S. Analysis of Meta-QTL and candidate genes related to yield components in maize. Acta Agron Sin , 2013, 39: 969–978 (in Chinese with English abstract)



[9]Yu J M, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 2006, 17: 155–160



[10]Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5–20



[11]Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32–39



[12]Weng J F, Xie C X, Hao Z F, Wang J J, Liu C L, Li M S, Zhang D G, Bai L, Zhang S H, Li X H. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One, 2011, 6: e29229



[13]Weng J F, Liu X J, Wang Z H, Wang J J, Zhang L, Hao Z F, Xie C X, Li M S, Zhang D G, Bai L, Liu C L, Zhang S H, Li X H. Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize. Phytopathology, 2012, 102: 692–699



[14]Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159–162



[15]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J M, Zhang Z W, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714–718



[16]Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M D, Buckler E S, Rocheford T R. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet, 2011, 7: e1002383



[17]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321–4326



[18]Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192–194



[19]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959



[20]Hardy O J, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618–620



[21]Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635



[22]刘宗华,汤继华, 卫晓轶,王春丽, 田国伟, 胡彦民, 陈伟程. 氮胁迫和正常条件下玉米穗部性状的QTL分析. 中国农业科学, 2007, 40: 2409–2417 (in Chinese with English abstract)



Liu Z H, Tang J H, Wei X Y, Wang C L, Tian G W, Hu Y M, Chen W C. QTL mapping of ear traits under low and high nitrogen conditions in maize. Sci Agric Sin, 2007, 40: 2409–2417 (in Chinese with English abstract)



[23]Smith L G, Greene B, Veit B, Hake S. A dominant mutation in the maize homeobox gene, knotted-1, causes its ectopic expression in leaf cells with altered fates. Development, 1992, 1l6: 21–30



[24]Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R, Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, McMullen M D, Ware D, Balint-Kurti P J, Holland J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011, 43: 163–168



[25]Poland J A, Bradbury P J, Buckler E S, Nelson R J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011, 108: 6893–6898



[26]Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz J O. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2010, 107: 21199–21204



[27]Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer G J, Smith K P. Genome-wide association mapping of fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed, 2011, 27: 439–454



[28]Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plans. Annu Rev Plant Biol, 2003, 54: 357–374



[29]Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263–265



[30]杨小红, 严建兵,郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展. 作物学报, 2007, 33: 523–530



Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007, 33: 523–530 (in Chinese with English abstract)



[31]Aranzana M J, Kim S, Zhao K Y, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C L, Toomajian C, Traw B, Zheng H G, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis thaliana identifies previously known genes responsible for variation in flowering time and pathogen resistance. PLoS Genet, 2005, 1: 0531–0539



[32]Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961–967



[33]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 446–451



[34]Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development, 2000, 127: 3161–3172



[35]Chuck G, Meeley R B, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev, 1998, 12: 1145–1154



[36]Chuck G, Meeley R B, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 2008, 135: 3013–3019



[37]Lee D Y, An G. Two AP2 family genes, supernumerary bract (SNB) and osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J, 2012, 69: 445–461



[38]Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development, 2005, 132: 1235–1245



[39]Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev, 2001, 15: 2755–2766



[40]Bommert P, Nagasawa N S, Jackson D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet, 2013, 45: 334–337

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!