[1]周恩远, 刘丽君, 祖伟, 孙聪姝. 春大豆农艺性状与品质相关关系的研究. 东北农业大学报, 2008, 39: 145–149
Zhou E Y, Liu L J, Zu W, Sun C S. Study on relationship between agronomic traits and quality traits in spring soybean. J Northeast Agric Univ, 2008, 39: 145–149 (in Chinese with English abstract)
[2]马占峰, 赵淑文, 杨琪, 邹玉梅. 生物产量──大豆高产育种的物质基础. 东北农业大学学报, 1995, 26: 125–130
Ma Z F, Zhao S W, Yao Q, Zhou Y M. Biological yeild─physical basis of soyeban high yeild breeding. J Northeast Agric Univ, 1995, 26: 125–130 (in Chinese with English abstract).
[3]杨胜荣, 黄宗洪, 向关伦, 甘雨, 杨占烈, 潘建慧, 郭慧. 以提高生物产量为途径选育杂交水稻新组合. 农技服务, 2010: 1267–1269
Yang S R, Huang Z H, Xiang G L, Gan Y, Yang Z L, Pan J H, Guo H. Selestive new combinations of hybrid rice by raising biological production. Agric Technol Ser, 2010, 1267–1269 (in Chinese with English abstract).
[4]Austin R B, Ford M A, Morgan C L. Genetic improvement in the yield of winter wheat: a further evaluation. J Agric Sci, 1989, 112: 295–301
[5]Fischer R A, Rees D, Sayre K D, Lu Z M, Condon A G, Saavedra A L. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci, 1998, 38: 1467–1475
[6]Jin J, Liu X, Wang G, Mi L, Shen Z, Chen X, Herbert S J. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. Field Crops Res, 2010, 115: 116–123
[7]Parry M A J, Reynolds M, Salvucci M E, Raines C, Andralojc P J, Zhu X G, Price G D, Condon A G, Furbank R T. Raising yield potential of wheat: II. Increasing photosynthetic capacity and efficiency. J Exp Bot, 2011, 62: 453–467
[8]黄中文, 赵团结, 盖钧镒. 大豆不同产量水平生物量积累与分配的动态分析. 作物学报, 2009, 35: 1483–1490
Huang Z W, Zhao T J, Gai J Y. Dynamic analysis of biomass accumulation and partition in Soybean with different yield levels. Acta Agron Sin, 2009, 35: 1483–1490 (in Chinese with English abstract).
[9]Board J E, Modali H. Dry matter accumulation predictors for optimal yield in soybean. Crop Sci, 2005, 45: 1790–1799
[10]Orf J H, Chase K, Adler F R, Mansur L M, Lark K G. Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci, 1999, 39: 1652–1657
[11]Yuan J, Njiti V N, Meksem K, Iqbal M J, Triwitayakorn K, Kassem M A, Davis G T, Schmidt M E, Lightfoot D A. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci, 2002, 42: 271–277
[12]Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784–791
[13]Guzman P S, Diers B W, Neece D J, St Martin S K, LeRoy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47: 111–122
[14]Palomeque L, Li-Jun L, Li W, Hedges B, Cober E R, Rajcan I. QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted× high-yielding exotic soybean lines. Theor Appl Genet, 2009, 119: 417–427
[15]Hao D, Cheng H, Yin Z, Cui S, Zhang D, Wang H, Yu D. Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theo Appl Genet, 2012, 124: 447–458
[16]黄中文, 赵团结, 喻德跃, 陈受宜, 盖钧镒. 大豆生物量积累、收获指数及产量间的相关与QTL分析. 作物学报, 2008, 34: 944–951
Huang Z W, Zhao T J, Yu D Y, Chen S Y, Gai J Y. Correlation and QTL mapping of biomass accumulation, apparent harvest index, and yield in soybean. Acta Agron Sin, 2008, 34: 944–951 (in Chinese with English abstract).
[17]印志同, 宋海娜, 孟凡凡, 许晓明, 喻德跃. 大豆光合气体交换参数的QTL分析. 作物学报, 2009, 36: 92–100
Yin Z T, Song H N, Meng F F, Xu X M, Yu D Y. QTL mapping for photosynthetic gas-exchange parameters in soybean. Acta Agron Sin, 2009, 36: 92–100 (in Chinese with English abstract)
[18]Ainsworth E A, Yendrek C R, Skoneczka J A, Long S P. 2011. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ, 35: 38–52
[19]Hao D, Chao M, Yin Z, Yu D. Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica, 2012: 1–13
[20]张贤泽, 马占峰, 赵淑文, 庞士铨. 大豆不同品种光合速率与产量关系的研究. 作物学报, 1986: 43–48
Zhang Z X, Ma Z F, Zhao S W, Pang S C. The relationship between net photosynthetic rate and yield formation in soybean. Acta Agron Sin, 1986: 43–48 (in Chinese with English abstract)
[21]杜维广, 张桂茹, 满为群, 栾晓燕, 陈怡, 谷秀芝. 大豆科学, 1999, 18: 154–159
Du W G, Zhang G R, Man W Q, Luan X Y, Chen Y, Gu X Z. Study on relationship between soybean photosynthesis and yield. Soybean Sci, 1999, 18: 154–159 (in Chinese with English abstract)
[22]Mehetre S S, Jamadagni B M. Biomass partitioning and growth characters in relation to plant architecture in soybean. Soybean Genet Newsl, 1996, 23: 92–97
[23]Schneeberger K, Weigel D. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci, 2011, 16: 282–288
[24]Fulton T M, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis of an advanced backcross of lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theo Appl Genet, 1997, 95: 881–894
[25]Thumma B R, Naidu B P, Chandra A, Cameron D F, Bahnisch L M, Liu C. Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis. J Exp Bot, 2001, 52: 203–214
[26]龚月桦, 高俊凤. 高等植物光合同化物的运输与分配. 西北植物学报, 1999, 19: 564–570
Gong Y H, Gao J F. Transport and partitioning of photoassimilate in higher plant. Acta Bot Boreal-Occident Sin, 1999, 19: 564–570 (in Chinese with English abstract)
[27]王玲玲, 杜吉到, 郑殿峰, 宋微微, 陈丽霞, 田静斋, 吕美芳. 大豆源库流关系的研究进展. 大豆科学, 2009, 28: 167–171
Wang L L, Du J D, Zheng D F, Song W W, Chen L X, Tian J Z, Lü M F. Advances in the studies of relation among source sink and flux of soybean. Soybean Sci, 2009, 28: 167–171 (in Chinese with English abstract)
[28]Liu W, Fu Y, Hu G, Si H, Zhu L, Wu C, Sun Z. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795
[29]印志同, 孟凡凡, 宋海娜, 晁毛妮, 许晓明, 邓德祥, 喻德跃: 大豆开花盛期快速叶绿素荧光参数的 QTL 分析. 中国农业科学, 2011, 44: 4980–4987
Yin Z T, Meng F F, Song H N, Chao M N, Xu X M, Deng D X, Yu D Y. QTL mapping for fast chlorophyll fluorescence parameters in soybean. Sci Agric Sin, 2011, 44: 4980–4987 (in Chinese with English abstract)
[30]Flood P J, Harbinson J, Aarts M G M. Natural genetic variation in plant photosynthesis. Trends Plant Sci, 2011, 16: 327–335
[31]Lefebvre S, Lawson T, Fryer M, Zakhleniuk O V, Lloyd J C, Raines C A. Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol, 2005, 138: 451–460
[32]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651
[33]黄中文, 赵团结, 喻德跃, 陈受宜, 盖钧镒. 大豆产量有关性状QTL的检测. 中国农业科学, 2009, 42: 4155–4165
Huang Z W, Zhao T J, Yu D Y, Chen S Y, Gai J Y. Detection of QTLs of yield related traits in soybean. Sci Agric Sin, 2009, 42: 4155–4165 (in Chinese with English abstract)
[34]Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582–589
[35]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[36]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theo Appl Genet, 1996, 93: 1011–1016
[37]Csanadi G, Vollmann J, Stift G, Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theo Appl Genet, 2001, 103: 912–919
[38]Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theo Appl Genet, 2001, 103: 702–709
[39]Guzman P S, Diers, B W, Neece D J, St Martin S K, LeRoy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47: 111–122
[40]Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theo Appl Genet, 2005, 111: 851–861
[41]Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Cianzio S R. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68–74
[42]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theo Appl Genet, 2004, 109: 552–561 |