作物学报 ›› 2014, Vol. 40 ›› Issue (01): 7-16.doi: 10.3724/SP.J.1006.2014.00007
晁毛妮1,**,郝德荣2,**,印志同3,张晋玉1,宋海娜1,张怀仁1,褚姗姗1,张国正1,喻德跃1,*
CHAO Mao-Ni1,**,HAO De-Rong2,**,YIN Zhi-Tong3,ZHANG Jin-Yu1,SONG Hai-Na1,ZHANG Huai-Ren1,CHU Shan-Shan1,ZHANG Guo-Zheng1,YU De-Yue1,*
摘要:
生物量与后期的籽粒产量存在紧密联系, 是决定作物经济产量的主要因素之一。本研究利用自然群体中的1142 SNP在两年环境下通过全基因组关联分析检测大豆基因组中与生物量及产量组分显著关联的SNP。结果表明: (1)生物量、百粒重和单株籽粒产量在自然群体中存在广泛的表型及遗传变异, 并存在极显著的正相关, 其中生物量与单株籽粒产量之间的相关略高于与百粒重;(2)两年环境下共检测到41、56和29个SNP分别与生物量、百粒重和单株籽粒产量显著关联, 其中仅有6、19和1个SNP在2个环境中都被检测到;(3)共检测到15个SNP同时控制2个或2个以上性状, 其中位于第19染色体上的BARC-029051-06057位点被检测到同时与生物量、百粒重和单株籽粒产量3个性状显著关联, 表明有共同的遗传基础, 同时也解释了性状间相关的遗传原因;(4)鉴定到的多个SNP与先前我们对叶绿素荧光参数及多个环境下产量相关性状的定位结果共位。这些显著关联SNP位点的鉴定, 有助于理解生物量及产量相关性状的遗传机制, 从而促进利用分子标记辅助选择聚合有利基因, 实现未来大豆高产育种计划。
[1]周恩远, 刘丽君, 祖伟, 孙聪姝. 春大豆农艺性状与品质相关关系的研究. 东北农业大学报, 2008, 39: 145–149Zhou E Y, Liu L J, Zu W, Sun C S. Study on relationship between agronomic traits and quality traits in spring soybean. J Northeast Agric Univ, 2008, 39: 145–149 (in Chinese with English abstract)[2]马占峰, 赵淑文, 杨琪, 邹玉梅. 生物产量──大豆高产育种的物质基础. 东北农业大学学报, 1995, 26: 125–130Ma Z F, Zhao S W, Yao Q, Zhou Y M. Biological yeild─physical basis of soyeban high yeild breeding. J Northeast Agric Univ, 1995, 26: 125–130 (in Chinese with English abstract).[3]杨胜荣, 黄宗洪, 向关伦, 甘雨, 杨占烈, 潘建慧, 郭慧. 以提高生物产量为途径选育杂交水稻新组合. 农技服务, 2010: 1267–1269Yang S R, Huang Z H, Xiang G L, Gan Y, Yang Z L, Pan J H, Guo H. Selestive new combinations of hybrid rice by raising biological production. Agric Technol Ser, 2010, 1267–1269 (in Chinese with English abstract).[4]Austin R B, Ford M A, Morgan C L. Genetic improvement in the yield of winter wheat: a further evaluation. J Agric Sci, 1989, 112: 295–301[5]Fischer R A, Rees D, Sayre K D, Lu Z M, Condon A G, Saavedra A L. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci, 1998, 38: 1467–1475[6]Jin J, Liu X, Wang G, Mi L, Shen Z, Chen X, Herbert S J. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. Field Crops Res, 2010, 115: 116–123[7]Parry M A J, Reynolds M, Salvucci M E, Raines C, Andralojc P J, Zhu X G, Price G D, Condon A G, Furbank R T. Raising yield potential of wheat: II. Increasing photosynthetic capacity and efficiency. J Exp Bot, 2011, 62: 453–467[8]黄中文, 赵团结, 盖钧镒. 大豆不同产量水平生物量积累与分配的动态分析. 作物学报, 2009, 35: 1483–1490Huang Z W, Zhao T J, Gai J Y. Dynamic analysis of biomass accumulation and partition in Soybean with different yield levels. Acta Agron Sin, 2009, 35: 1483–1490 (in Chinese with English abstract).[9]Board J E, Modali H. Dry matter accumulation predictors for optimal yield in soybean. Crop Sci, 2005, 45: 1790–1799[10]Orf J H, Chase K, Adler F R, Mansur L M, Lark K G. Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci, 1999, 39: 1652–1657[11]Yuan J, Njiti V N, Meksem K, Iqbal M J, Triwitayakorn K, Kassem M A, Davis G T, Schmidt M E, Lightfoot D A. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci, 2002, 42: 271–277[12]Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784–791[13]Guzman P S, Diers B W, Neece D J, St Martin S K, LeRoy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47: 111–122[14]Palomeque L, Li-Jun L, Li W, Hedges B, Cober E R, Rajcan I. QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted× high-yielding exotic soybean lines. Theor Appl Genet, 2009, 119: 417–427[15]Hao D, Cheng H, Yin Z, Cui S, Zhang D, Wang H, Yu D. Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theo Appl Genet, 2012, 124: 447–458[16]黄中文, 赵团结, 喻德跃, 陈受宜, 盖钧镒. 大豆生物量积累、收获指数及产量间的相关与QTL分析. 作物学报, 2008, 34: 944–951Huang Z W, Zhao T J, Yu D Y, Chen S Y, Gai J Y. Correlation and QTL mapping of biomass accumulation, apparent harvest index, and yield in soybean. Acta Agron Sin, 2008, 34: 944–951 (in Chinese with English abstract).[17]印志同, 宋海娜, 孟凡凡, 许晓明, 喻德跃. 大豆光合气体交换参数的QTL分析. 作物学报, 2009, 36: 92–100Yin Z T, Song H N, Meng F F, Xu X M, Yu D Y. QTL mapping for photosynthetic gas-exchange parameters in soybean. Acta Agron Sin, 2009, 36: 92–100 (in Chinese with English abstract)[18]Ainsworth E A, Yendrek C R, Skoneczka J A, Long S P. 2011. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ, 35: 38–52[19]Hao D, Chao M, Yin Z, Yu D. Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica, 2012: 1–13[20]张贤泽, 马占峰, 赵淑文, 庞士铨. 大豆不同品种光合速率与产量关系的研究. 作物学报, 1986: 43–48Zhang Z X, Ma Z F, Zhao S W, Pang S C. The relationship between net photosynthetic rate and yield formation in soybean. Acta Agron Sin, 1986: 43–48 (in Chinese with English abstract)[21]杜维广, 张桂茹, 满为群, 栾晓燕, 陈怡, 谷秀芝. 大豆科学, 1999, 18: 154–159Du W G, Zhang G R, Man W Q, Luan X Y, Chen Y, Gu X Z. Study on relationship between soybean photosynthesis and yield. Soybean Sci, 1999, 18: 154–159 (in Chinese with English abstract)[22]Mehetre S S, Jamadagni B M. Biomass partitioning and growth characters in relation to plant architecture in soybean. Soybean Genet Newsl, 1996, 23: 92–97[23]Schneeberger K, Weigel D. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci, 2011, 16: 282–288[24]Fulton T M, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis of an advanced backcross of lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theo Appl Genet, 1997, 95: 881–894[25]Thumma B R, Naidu B P, Chandra A, Cameron D F, Bahnisch L M, Liu C. Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis. J Exp Bot, 2001, 52: 203–214[26]龚月桦, 高俊凤. 高等植物光合同化物的运输与分配. 西北植物学报, 1999, 19: 564–570Gong Y H, Gao J F. Transport and partitioning of photoassimilate in higher plant. Acta Bot Boreal-Occident Sin, 1999, 19: 564–570 (in Chinese with English abstract)[27]王玲玲, 杜吉到, 郑殿峰, 宋微微, 陈丽霞, 田静斋, 吕美芳. 大豆源库流关系的研究进展. 大豆科学, 2009, 28: 167–171Wang L L, Du J D, Zheng D F, Song W W, Chen L X, Tian J Z, Lü M F. Advances in the studies of relation among source sink and flux of soybean. Soybean Sci, 2009, 28: 167–171 (in Chinese with English abstract)[28]Liu W, Fu Y, Hu G, Si H, Zhu L, Wu C, Sun Z. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795[29]印志同, 孟凡凡, 宋海娜, 晁毛妮, 许晓明, 邓德祥, 喻德跃: 大豆开花盛期快速叶绿素荧光参数的 QTL 分析. 中国农业科学, 2011, 44: 4980–4987Yin Z T, Meng F F, Song H N, Chao M N, Xu X M, Deng D X, Yu D Y. QTL mapping for fast chlorophyll fluorescence parameters in soybean. Sci Agric Sin, 2011, 44: 4980–4987 (in Chinese with English abstract)[30]Flood P J, Harbinson J, Aarts M G M. Natural genetic variation in plant photosynthesis. Trends Plant Sci, 2011, 16: 327–335[31]Lefebvre S, Lawson T, Fryer M, Zakhleniuk O V, Lloyd J C, Raines C A. Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol, 2005, 138: 451–460[32]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651[33]黄中文, 赵团结, 喻德跃, 陈受宜, 盖钧镒. 大豆产量有关性状QTL的检测. 中国农业科学, 2009, 42: 4155–4165Huang Z W, Zhao T J, Yu D Y, Chen S Y, Gai J Y. Detection of QTLs of yield related traits in soybean. Sci Agric Sin, 2009, 42: 4155–4165 (in Chinese with English abstract)[34]Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582–589[35]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509[36]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theo Appl Genet, 1996, 93: 1011–1016[37]Csanadi G, Vollmann J, Stift G, Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theo Appl Genet, 2001, 103: 912–919[38]Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theo Appl Genet, 2001, 103: 702–709[39]Guzman P S, Diers, B W, Neece D J, St Martin S K, LeRoy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47: 111–122[40]Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theo Appl Genet, 2005, 111: 851–861[41]Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Cianzio S R. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68–74[42]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theo Appl Genet, 2004, 109: 552–561 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[3] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[4] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[8] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[9] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[10] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[11] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[12] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[13] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[14] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[15] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
|