欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (02): 198-204.doi: 10.3724/SP.J.1006.2014.00198

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个水分胁迫应答蛋白与小麦抗旱性的关系及其基因的定位

金秀锋,王宪国,任万杰,张晓科*,谢惠民,范锋贵   

  1. 西北农林科技大学农学院 / 国家小麦改良中心杨凌分中心, 陕西杨凌 712100
  • 收稿日期:2013-05-24 修回日期:2013-08-31 出版日期:2014-02-12 网络出版日期:2013-11-14
  • 通讯作者: 张晓科, E-mail: zhangxiaoke66@126.com
  • 基金资助:

    本研究由国家自然科学基金(30971770)项目, 引进国际先进农业科学技术计划(948计划)项目(2011G-3)和西北农林科技大学唐仲英育种基金资助。

Relationship between a Water Stress Responsive Protein and Drought Resistance and Molecular Mapping of the Target Gene in Common Wheat

JIN Xiu-Feng,WANG Xian-Guo,REN Wan-Jie,ZHANG Xiao-Ke*,XIE Hui-Min,FAN Feng-Gui   

  1. College of Agronomy, Northwest A&F University / Yangling Sub-center of National Wheat Improvement Center, Yangling 712100, China
  • Received:2013-05-24 Revised:2013-08-31 Published:2014-02-12 Published online:2013-11-14
  • Contact: 张晓科, E-mail: zhangxiaoke66@126.com

摘要:

分析与小麦抗旱性密切相关的水分胁迫应答蛋白, 定位蛋白基因并挖掘与其连锁的分子标记对小麦抗旱分子辅助选择具有重要意义在一年两点田间全生育期抗旱性鉴定基础上, -0.5 MPa PEG-6000模拟干旱胁迫处理小麦幼苗48 h, 并应用SDS-PAGE方法检测分子量约66.2 kD的水分胁迫应答蛋白, 分析其表达与小麦抗旱性的关系。128小麦品种(), 检测出67份表达该蛋白, 61份未表达该蛋白; 前者的平均抗旱指数为1.00, 而后者为0.80, 有极显著差异(P<0.01), 各抗旱性等级中表达该蛋白的品种比例随着抗性等级的降低而减小。利用晋麦47×西农2208杂交后代230F3株系进行遗传分析, 发现该蛋白表达由1对显性基因控制; 目的基因与位于小麦5AS染色体上的5SSR标记(Xgwm129Xgwm304Xbarc56Xbarc117Xbarc197)连锁, 位于邻近标记Xbarc56Xbarc117, 遗传距离分别为2.2 cM2.9 cM。用这两个紧密连锁标记检测128小麦品种(), 67个品种()与晋麦47具有相同的标记位点, 其中86.6%的品种()(58/67)在水分胁迫后表达目标蛋白。该约66.2 kD水分胁迫应答蛋白与小麦的抗旱性密切相关, 与其紧密连锁的分子标记可为小麦抗旱分子辅助选择提供依据。

关键词: 小麦, 水分胁迫应答蛋白抗旱指数, 基因标记定位

Abstract:

Proteins in response to water stress may closely relate to drought resistance in plants. Genes encoding such proteins are potentially used in wheat breeding aiming to improve drought resistance. The drought resistance of 128 wheat varieties (lines) was identified in two locations in the 2010–2011 growing season. These varieties were then subjected to SDS-PAGE analysis for a ~66.2 kD water stress responsive protein after seedling treatment with -0.5 MPa PEG-6000 for 48 h. Sixty-seven varieties showed expression of the target protein, whereas the remaining 61 varieties absented from the protein expression. Drought resistance index (DI) revealed significant difference between the two groups of varieties (1.00 for protein-positive varieties and 0.80 for protein-negative varieties, P < 0.01), and the ratio of protein-positive varieties in each DI level decreased with the decrease of DI value. A dominate gene was found to encode the ~66.2 kD protein using the F3 population derived from Jinmai 47 ´ Xinong 2208, which was composed of 230 lines. The target gene was located on chromosome 5AS of wheat, linking to SSR markers Xgwm129, Xgwm304, Xbarc56, Xbarc117,and Xbarc197. The closest flanking markers were Xbarc56 and Xbarc117 with genetic distances of 2.2 cM and 2.9 cM, respectively. To validate the effectiveness of SSR markers, we conducted PCR amplification in the 128 varieties using Xbarc56 and Xbarc117 primers. Sixty-seven varieties amplified the same band as that in Jinmai 47 (high drought resistance), in which 86.6% (58/67) expressed the ~66.2 kD protein after PEG-6000 treatment. Apparently, this ~66.2 kD water stress responsive protein has a close relationship with drought resistance in common wheat, and the SSRs flanking to its coding gene are useful in marker-assisted selection.

Key words: Common wheat, Water stress responsive protein, Drought resistance index (DI), Gene mapping with molecular markers

[1]Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperature: towards genetic engineering for stress tolerance. Planta, 2003, 218: 1–14



[2]范锋贵, 张晓科, 任万杰, 王晓龙, 叶石, 付晓洁, 王宏礼, 朱建楚. 晋麦47幼苗中一个水分胁迫应答蛋白的SDS-PAGE和Nano LC-MS/MS鉴定. 麦类作物学报, 2012, 32: 1161–1166



Fan F G, Zhang X K, Ren W J, Wang X L, Ye S, Fu X J, Wang H L, Zhu J C. Identification of a responsive protein in seedling of wheat cultivar Jinmai 47 under water stress by SDS-PAGE and LC-MS/MS. J Triticeae Crops, 2012, 32: 1161–1166 (in Chinese with English abstract)



[3]Caruso G, Cavaliere C, Foglia P, Gubbiotti R, Samperi R, Laganà A. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci, 2009, 177: 570–576



[4]Neil S J, Burnett E C. Regulation of gene expression during water deficit stress. Plant Growth Regul, 1999, 29: 23–33



[5]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227



[6]Kosová K, Vítámvás P, Prášil I T, Renaut J. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. Proteomics, 2011, 74: 1301–1322



[7]Schuppler U, He P H, John P C L, Munns R. Effect of water stress on cell division and cell-division-cycle 2-like cell-cycle kinase activity in wheat leaves. Plant Physiol, 1998, 117: 667–678



[8]石峰, 谢惠民, 张晓科. 冬小麦不同抗旱品种抽穗期干旱诱导蛋白差异与抗旱性的研究. 麦类作物学报, 2005, 25(3): 32–36



Shi F, Xie H M, Zhang X K. Study on protein variation and drought resistance of different cultivars of winter wheat during heading stage in the drought induced condition. J Triticeae Crops, 2005, 25(3): 32–36 (in Chinese with English abstract)



[9]张洁, 谢惠民, 吕树作, 王宏礼. 水分胁迫条件下冬小麦幼苗应答蛋白的表达及其与品种抗旱性的关系. 麦类作物学报, 2007, 27: 303–308



Zhang J, Xie H M, Lv S Z, Wang H L. Relationship between drought resistance and response protein of winter wheat during seedling stage under water stress. J Triticeae Crops, 2007, 27: 303–308 (in Chinese with English abstract)



[10]任万杰, 范锋贵, 鲁清林, 高正, 张晓科, 张钰玉. 苗期水分胁迫应答蛋白与小麦品种(系)水旱生态型的关系. 干旱地区农业研究, 2011, 29(4): 1–5



Ren W J, Fan F G, Lu Q L, Gao Z, Zhang X K, Zhang Y Y. Relationship between ecological types of wheat cultivars sown in irrigated and dry fields and their responsive protein at seedling stage under different water stress treatments. Agric Res Arid Areas, 2011, 29(4): 1–5 (in Chinese with English abstract)



[11]王婧, 谢惠民, 张春霞, 王宏礼. 冬小麦幼苗期水分胁迫应答蛋白遗传分析及基因初步定位. 麦类作物学报, 2009, 29: 396–400



Wang J, Xie H M, Zhang C X, Wang H L. Heredity analysis and gene mapping of winter wheat‘s response protein in seedling stage under water stress. J Triticeae Crops, 2009, 29: 396–400 (in Chinese with English abstract)



[12]韩丽娜, 丁静, 韩清芳, 丁瑞霞, 聂俊峰, 贾志宽, 李文静. 黄土高原区草粮(油)翻耕轮作的土壤水分及作物产量效应. 农业工程学报, 2012, 24(28): 129–137



Han L N, Ding J, Han Q F, Ding R X, Nie J F, Jia Z K, Li W J. Effects of alfalfa-grain (oil) crop plowing rotation on soil moisture and crop yield in Loess Plateau. Trans CSAE, 2012, 24(28): 129–137 (in Chinese with English abstract)



[13]兰巨生. 农作物综合抗旱性评价方法的研究. 西北农业学报, 1998, 7(3): 85–87



Lan z S. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agric Boreali-Occident Sin 1998, 7(3): 85–87 (in Chinese with English abstract)



[14]Michel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000. Plant Physiol, 1973, 51: 914–916



[15]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76



[16]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023



[17]Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–697



[18]Song Q J, Shi J R, Sigh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet ,2005, 110: 550–560



[19]王士强, 胡银岗, 余奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40: 2452–2459



Wang S Q, Hu Y G, She K J, Zhou L L, Meng F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Sci Agric Sin, 2007, 40: 2452–2459 (in Chinese with English abstract)



[20]沈波, 李云荫. 渗透胁迫和脱落酸对冬小麦叶片蛋白质的影响. 作物学报, 1996, 22: 288–293



Shen B, Li Y Y. Effect of osmotic stress and abscisic acid on proteins in leaves of winter wheat. Acta Agron Sin, 1996, 22: 288–293



[21]任万杰. 一个66.2 kDa的小麦水分胁迫应答蛋白及其基因定位的研究. 西北农林科技大学硕士学位论文, 2011. pp 26–28



Ren W J. Relationship between ecological types of wheat cultivars sown in irrigated and dry fields and their 66.2 kDa responsive protein under different water stress treatments and location of the gene encoded the protein. MS Thesis of Graduate School of Northwest A&F University, 2011. pp 26–28 (in Chinese with English abstract)



[22]单雷, 赵双宜, 陈芳, 夏光敏. 小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位. 中国农业科学, 2006, 39: 225–230



Shan L, Zhao S Y, Chen F, Xia G M. Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No. 3. Sci Agric Sin, 2006, 39: 225–230 (in Chinese with English abstract)



[23]Simon-Sarkadi L, Kocsy G, Sebestyén Z, Galiba G. Deletions of chromosome 5A affect free amino acid and polyamine levels in wheat subjected to salt stress. Environ Exp Bot , 2007, 60: 193–201



[24]杨凯, 昌小平, 胡荣海, 贾继增. 干旱胁迫下小麦脯氨酸积累相关基因的染色体定位. 作物学报, 2001, 27: 363–366



Yang K, Chang X P, Hu R H, Jia J Z. Chromosomal localization of genes associated with proline accumulation under drought stress in wheat (Triticum aestivum L.). Acta Agron Sin, 2001, 27: 363–366 (in Chinese with English abstract)



[25]高宁, 景蕊莲, 陈耀锋, 张传福. 作物抗旱相关分子标记及其辅助选择的研究进展. 植物遗传资源学报, 2003, 4: 274–278



Gao N, Jing R L, Chen Y F, Zhang C F. Advance on molecular marker assisted selection of drought resistance in crops. J Plant Genet Resour, 2003, 4: 274–278 (in Chinese with English abstract)



[26]Ma H X, Bai G H, Lu W Z. Quantitative trait loci for aluminum resistance in wheat cultivar Chinese Spring. Plant Soil, 2006, 283: 239–249



[27]Båga M, Chodaparambil S V, Limin A E, Pecar M, Brian Fowler D, Chibbar R N. Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics, 2007, 7: 53–68



[28]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol A B, Saranga Y. Genomic dissection of drought resistance in durum wheats × wild emmer wheat recombinant inbreed line population. Plant Cell Environ, 2009, 32: 758–779

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!