[1]Knox C A P, Sonthayanon B, Chandra G R, Muthukrishnan S. Structure and organization of two divergent α-amylase genes from barley. Plant Mol Biol, 1987, 9: 3–17
[2]Rogers J C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem, 1985, 260: 3731–3738
[3]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289
[4]谭贤杰, 宋燕春, 石云素, 程伟东, 吴子恺, 王天宇, 黎裕. 玉米Bubisco活化酶基因ZmRCA1的序列变异分析. 作物学报, 2011, 37: 58–66
Tan X J, Song Y C, Shi Y S, Cheng W D, Wu Z K, Wang T Y, Li Y. Analysis of sequence polymorphism of ZmRCA1 in maize. Acta Agron Sin, 2011, 37: 58–66 (in Chinese with English abstract)
[5]张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦TaPK7 基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34: 1537–1543
Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between Single Nucleotide Polymorphism of TaPK7 Gene. Acta Agron Sin, 2008, 34: 1537–1543 (in Chinese with English abstract)
[6]王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 744–745
Wang G L, Fang H J. Plant gene engineering, 2nd edn. Beijing: China Science Press, 2002. pp 744–745 (in Chinese)
[7]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426–428
[8]Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res, 1994, 22: 4673–4680
[9]Rozas J, Sánchez-DelBarrio J C, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19: 2496–2497
[10]Watterson G A. On the number of segregating sites in genetical models without recombination. Theor Pop Biol, 1975, 7: 256−276
[11]Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269−5273
[12]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123: 585−595
[13]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599
[14]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959
[15]Robert X, Haser R, Gottschalk T E, Ratajczak F, Driguez H, Svensson B, Aghajari N. The structure of barley alpha-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure, 2003, 11: 973–984
[16]Matthies I E, Weise S, Röder M S. Association of haplotype diversity in the α-amylase gene amy1 with malting quality parameters in barley. Mol Breed, 2003, 23: 139–152
[17]Bozonnet S, Jensen M T, Nielsen M M, Aghajari N, Jensen M H, Kramhøft B, Willemoës M, Tranier S, Haser R, Svensson B. The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. FEBS J, 2007, 274: 5055–5067
[18]Yang X, Westcott S, Gong X, Evans E, Zhang X Q, Lance R C M, Li C D. Amino acid substitutions of the limit dextrinase gene in barley are associated with enzyme thermostability. Mol Breed, 2009, 23: 61–74
[19]Fox G P, Panozzo J F, Li C D, Lance C M, Inkerman P A, Henry R J. Molecular basis of barley quality. Aust J Agric Res, 2003, 54: 1081–1101
[20]Fleet C M, Sun TP. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol, 2005, 8: 77–85
[21]Gubler F, Kalla R, Roberts J K, Jacobsen J V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell, 1995, 7: 1879–1891
[22]Rogers J C, Lanahan M B, Rogers S W. The cis-acting gibberellin response complex in high pI alpha-amylase gene promoters requirement of a coupling element for high-level transcription. Plant Physiol, 1994, 105: 151–158
[23]Ülker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7: 491–498
[24]Umemura T, Perata P, Futsuhara Y, Yamaguchi J. Sugar sensing and alpha-amylase gene repression in rice embryos. Planta, 1998, 204: 420–428
[25]Perata P, Matsukura C, Vernieri P, Yamaguchi J. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell, 1997, 9: 2197–2208
[26]Bush D S. Calcium regulation in plant cells and its role in signaling. Plant Physiol Plant Mol Biol, 1995, 46: 95–122
[27]Lovegrove A, Hooley R. Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci, 2000, 5: 102–110
[28]Ayoub M, Armstrong E, Bridger G, Fortin M G, Mather D E. Marker-based selection in barley for a QTL region affecting alpha-amylase activity of malt. Crop Sci, 2003, 43: 556–561
[29]Li C D, Tarr A, Lance R C M, Harasymow S, Uhlmann J, Westcot S, Young K J, Grime C R, Cakir M, Broughton S, Appels R. A major QTL controlling seed dormancy and pre-harvest sprouting/grain α-amylase in two-rowed barley (Hordeum vulgare L.). Aust J Agric Res, 2003, 54: 1303–1313
[30]Zhang X Q, Li C D, Panozzo J, Westcott S, Zhang G P, Tay A, Appels R, Jones M, Lance R. Dissecting the telomere region of barley chromosome 5HL using rice genomic sequences as references: new markers for tracking a complex region in breeding. Mol Breed, 2011, 27: 1–9
[31]Marquez-Cedillo L A , Hayes P M, Jones B L, Kleinhofs A, Legge W G , Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet, 2000, 101: 173–184 |