欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (02): 205-213.

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Amy6-4基因遗传多样性及其与α-淀粉酶活性的关联分析

姜晓东1,2,郭刚刚1,张京1,*   

  1. 1 中国农业科学院作物科学研究所, 北京 100081; 2山西农业大学农学院, 山西太谷 030801
  • 收稿日期:2013-06-22 修回日期:2013-09-16 出版日期:2014-02-12 网络出版日期:2013-11-14
  • 通讯作者: 张京, E-mail: zhangjing03@caas.cn, Tel: 010-62189624
  • 基金资助:

    本研究国家公益性行业(农业)科研专项(3-29)和国家现代农业产业技术体系建设专项(CARS-05)资助。

Association of Genetic Diversity for Amy6-4 Gene with α-Amylase Activity in Germplasm of Barley

JIANG Xiao-Dong1,2,GUO Gang-Gang1,ZHANG Jing1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
  • Received:2013-06-22 Revised:2013-09-16 Published:2014-02-12 Published online:2013-11-14
  • Contact: 张京, E-mail: zhangjing03@caas.cn, Tel: 010-62189624

摘要:

α-淀粉酶活性是影响大麦种子发芽和麦芽制作及啤酒酿造的重要性状, Amy6-4为编码高等电点的α-淀粉酶基因, 挖掘其高活性的等位变异对啤酒大麦的品种改良具有指导意义。通过对58份大麦品种中Amy6-4基因的重测序, 研究了该基因的核苷酸序列以及在品种间的遗传多样性, 并在群体结构分析的基础上, 进行了核苷酸多态性与α-淀粉酶活性的关联分析。结果表明, Amy6-4基因共存在7个单核苷酸变异位点(SNP), 构成5种单倍型。其中, H_3单倍型最普遍, 发生频率为51.7% (30/58); 其次为H_1单倍型, 发生频率为39.7% (23/58); 其他3种单倍型发生的频率约为10%SNP位点及其构成的单倍型均与酶活性无关联性

关键词: 大麦, 遗传多样性, 单倍型, 连锁不平衡, 关联分析

Abstract:

Amy6-4 is one of the genes codingα-amylase with high isoelectric point, which plays an important role in germination and malting process in barley (Hordeum vulgare L.). To detect the intervarietal polymorphism on Amy6-4 locus, we resequenced the Amy6-4 alleles in 58 barley varieties that are deposited in the germplasm bank of China, and analyzed the association of single nucleotide polymorphisms (SNPs) and haplotypes with α-amylase activity based on the population structure. A total of seven SNPs in five haplotypes were detected among the 58 barley entries. Haplotype H_3 was most popular with frequence of 51.7% (30/58) in the entries tested, and haplotype H_1 ranked the second with frequnce about 39.7% (23/58). However, the remaining three haplotypes only shared about 10% of the frequency. No SNP or haplotype was associated with α-amylase activity.

Key words: Barley, Genetic diversity, Haplotype, Linkage disequilibrium, Association analysis

[1]Knox C A P, Sonthayanon B, Chandra G R, Muthukrishnan S. Structure and organization of two divergent α-amylase genes from barley. Plant Mol Biol, 1987, 9: 3–17



[2]Rogers J C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem, 1985, 260: 3731–3738



[3]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289



[4]谭贤杰, 宋燕春, 石云素, 程伟东, 吴子恺, 王天宇, 黎裕. 玉米Bubisco活化酶基因ZmRCA1的序列变异分析. 作物学报, 2011, 37: 58–66



Tan X J, Song Y C, Shi Y S, Cheng W D, Wu Z K, Wang T Y, Li Y. Analysis of sequence polymorphism of ZmRCA1 in maize. Acta Agron Sin, 2011, 37: 58–66 (in Chinese with English abstract)



[5]张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦TaPK7 基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34: 1537–1543



Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between Single Nucleotide Polymorphism of TaPK7 Gene. Acta Agron Sin, 2008, 34: 1537–1543 (in Chinese with English abstract)



[6]王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 744–745



Wang G L, Fang H J. Plant gene engineering, 2nd edn. Beijing: China Science Press, 2002. pp 744–745 (in Chinese)



[7]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426–428



[8]Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res, 1994, 22: 4673–4680



[9]Rozas J, Sánchez-DelBarrio J C, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19: 2496–2497



[10]Watterson G A. On the number of segregating sites in genetical models without recombination. Theor Pop Biol, 1975, 7: 256−276



[11]Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269−5273



[12]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123: 585−595



[13]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[14]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959



[15]Robert X, Haser R, Gottschalk T E, Ratajczak F, Driguez H, Svensson B, Aghajari N. The structure of barley alpha-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure, 2003, 11: 973–984



[16]Matthies I E, Weise S, Röder M S. Association of haplotype diversity in the α-amylase gene amy1 with malting quality parameters in barley. Mol Breed, 2003, 23: 139–152



[17]Bozonnet S, Jensen M T, Nielsen M M, Aghajari N, Jensen M H, Kramhøft B, Willemoës M, Tranier S, Haser R, Svensson B. The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. FEBS J, 2007, 274: 5055–5067



[18]Yang X, Westcott S, Gong X, Evans E, Zhang X Q, Lance R C M, Li C D. Amino acid substitutions of the limit dextrinase gene  in barley are associated with enzyme thermostability. Mol Breed, 2009, 23: 61–74



[19]Fox G P, Panozzo J F, Li C D, Lance C M, Inkerman P A, Henry R J. Molecular basis of barley quality. Aust J Agric Res, 2003, 54: 1081–1101



[20]Fleet C M, Sun TP. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol, 2005, 8: 77–85



[21]Gubler F, Kalla R, Roberts J K, Jacobsen J V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell, 1995, 7: 1879–1891



[22]Rogers J C, Lanahan M B, Rogers S W. The cis-acting gibberellin response complex in high pI alpha-amylase gene promoters requirement of a coupling element for high-level transcription. Plant Physiol, 1994, 105: 151–158



[23]Ülker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7: 491–498



[24]Umemura T, Perata P, Futsuhara Y, Yamaguchi J. Sugar sensing and alpha-amylase gene repression in rice embryos. Planta, 1998, 204: 420–428



[25]Perata P, Matsukura C, Vernieri P, Yamaguchi J. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell, 1997, 9: 2197–2208



[26]Bush D S. Calcium regulation in plant cells and its role in signaling. Plant Physiol Plant Mol Biol, 1995, 46: 95–122



[27]Lovegrove A, Hooley R. Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci, 2000, 5: 102–110



[28]Ayoub M, Armstrong E, Bridger G, Fortin M G, Mather D E. Marker-based selection in barley for a QTL region affecting alpha-amylase activity of malt. Crop Sci, 2003, 43: 556–561



[29]Li C D, Tarr A, Lance R C M, Harasymow S, Uhlmann J, Westcot S, Young K J, Grime C R, Cakir M, Broughton S, Appels R. A major QTL controlling seed dormancy and pre-harvest sprouting/grain α-amylase in two-rowed barley (Hordeum vulgare L.). Aust J Agric Res, 2003, 54: 1303–1313



[30]Zhang X Q, Li C D, Panozzo J, Westcott S, Zhang G P, Tay A, Appels R, Jones M, Lance R. Dissecting the telomere region of barley chromosome 5HL using rice genomic sequences as references: new markers for tracking a complex region in breeding. Mol Breed, 2011, 27: 1–9



[31]Marquez-Cedillo L A , Hayes P M, Jones B L, Kleinhofs A, Legge W G , Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet, 2000, 101: 173–184

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[7] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[10] 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630.
[11] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[12] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[13] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[14] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[15] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!