作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1296-1303.doi: 10.3724/SP.J.1006.2014.01296
张勇1,2,**,孙石1,**,杨兴勇2,孙学刚1,吴存祥1,韩天富1,*
ZHANG Yong1,2,**,SUN Shi1,**,YANG Xing-Yong2,SUN Xue-Gang1,WU Cun-Xiang1,HAN Tian-Fu1,*
摘要:
为了加快育种进程,拓宽新品种的遗传基础,提高大豆在南繁条件下的杂交结实率,本研究选用7个东北春大豆早熟品种,在海南三亚进行光照处理和杂交技术试验,观察供试品种在长日照(18 h)处理和三亚自然短日照条件下植株形态、生长发育进程、花器官特征和花粉育性的变化,并研究光照处理、母本是否去雄和母本花蕾大小对杂交效果的影响。结果表明,海南冬季自然短日照致使大豆开花持续时间缩短,株高、花朵数量和单花重量降低,花朵及其各组成部分变小(P<0.01),花粉败育率上升(P<0.01)。以自然短日照处理植株作母本、长日照处理的材料作父本,在母本植株上选大花蕾,采用不去雄杂交,获得64.36%的杂交结实率,可基本满足杂交育种的需要。基于试验结果,提出了南繁条件下提高大豆杂交成功率的综合技术方案。
[1]周雪松, 刘荣志, 陈冠铭, 李劲松. 南繁: 现状与问题——南繁单位调查报告. 中国农学通报, 2012, 28(24): 161–165Zhou X S, Liu R Z, Chen G M, Li J S. Breeding in Hainan: present situation and problems—investigation report of breeding in Hainan. Chin Agric Sci Bull, 2012, 28(24): 161–165 (in Chinese with English abstract)[2]Chen G, Yang J, Lin Y, Wang L, Li J. Study on designing standards system frame work of Hainan national breeding and multiplication. Agric Sci & Technol, 2012, 13: 1437–1442[3]吉林省农业科学院, 中国大豆育种与栽培. 北京: 农业出版社, 1987. pp 304–306Jilin Academy of Agricultural Sciences. Soybean Breeding and Cultivation in China. Beijing: Agriculture Press, 1987. pp 304–306 (in Chinese)[4]吴俊强, 杨兆顺, 楼辰军, 钱芳, 李秀萍. 浅谈海南岛玉米南繁的技术措施. 天津农业科学, 2009, 15(1): 33–34W J Q, Yang Z S, Lou C J, Qian F, Li X P. Measures on corn breeding in Hainan province. Tianjin Agric Sci, 2009, 15(1): 33–34 (in Chinese with English abstract)[5]安伟, 南繁管理工作的几点体会与建议. 山西农业科学, 2007, 35(1): 86–88An W. Suggestions and experiences for crop winter nursery management in Hainan Island. J Shanxi Agric Sci, 2007, 35(1): 86–88 (in Chinese with English abstract) [6]于伟. 南繁大豆生长特点及丰产栽培技术措施. 大豆科技, 2012, (5): 13–16Yu W. Growth characteristics and high yield cultivation practices of soybean breeding lines propagated in Hainan province. Soybean Sci Technol, 2012, (5): 13–16 (in Chinese with English abstract)[7]李磊, 李智, 时和斌. 大豆海南加代的实践与体会. 作物杂志, 2003, (4): 52–53Li L, Li Z, Shi H B. Practice and experience on soybean southern propagation in Hainan province. Crops, 2003, (4): 52–53 (in Chinese)[8]Jia H, Wu C, Jiang B, Lu W, Hou W, Sun S, Yan H, Han T, Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS One, 2014, 9(4): e94139[9]吴存祥, 李继存, 沙爱华, 曾海燕, 孙石, 杨光明, 周新安, 常汝镇, 年海, 韩天富. 国家大豆品种区域试验对照品种的生育期组归属. 作物学报, 2012, 38: 1977–1987Wu C X, Li J C, Sha A H, Zeng H Y, Sun S, Yang G M, Zhou X A, Chang R Z, Nian H, Han T F. Maturity group classification of check varieties in national soybean uniform trials of China. Acta Agron Sin, 2012, 38: 1977−1987 (in Chinese with English abstract)[10]Fehr W R, Caviness C E. Stages of Soybean Development. Special Report 80, Cooperative Extension Service, Agriculture and Home Economic Experiment Station. Ames, Iowa: Iowa State University, 1977. pp 1–11[11]Yan J, Wu C, Zhang L, Hu P, Hou W, Zu W, Han T. Long-day effects on the terminal inflorescence development of a photoperiod-sensitive soybean [Glycine max (L.) Merr.] variety. Plant Sci, 2011, 180: 504–510[12]张勇, 杨兴勇, 董全中, 薛红, 张明明, 刘发, 万培蔚, 宋继玲, 刘长臣. 不去雄蕊杂交技术在海南南繁基地应用的研究. 作物杂志, 2009, (5): 87–88Zhang Y, Yang X Y, Dong Q Z, Xue H, Zhang M M, Liu F, Wan P W, Song J L, Liu C C. Application of not-removing stamen hybridization technique in soybean in Hainan base. Crops, 2009, (5): 87–88 (in Chinese with English abstract)[13]许海涛, 王友华, 许波. 夏大豆有性杂交技术与实践. 陕西农业科学, 2006, (4): 153–155Xu H T, Wang Y H, Xu B. Technique and practice of sexual hybridization of summer soybean. Shaanxi J Agric Sci, 2006, (4): 153–155 (in Chinese)[14]赵丽梅, 孙寰, 黄梅, 王曙明, 王跃强, 大豆结实率与花粉败育率之间的关系. 大豆科学, 2004, 23: 249–252Zhao L M, Sun H, Huang M, Wang S M, Wang Y Q. The relationship between seed setting rate and pollen sterility rate for soybean. Soybean Sci, 2004, 23: 249–252 (in Chinese with English abstract)[15]唐启义, 冯明光. DPS数据处理系统——实验设计、统计分析及模型优化. 北京: 科学出版社, 2006Tang Q Y, Feng M G. DPS DATA Processing System—Experimental Design, Statistical Analysis and Modeling. Beijing: Science Press, 2006 (in Chinese)[16]Talukdar A, Shivakumar M. Pollination without emasculation: an efficient method of hybridization in soybean (Glycine max (L.) Merrill). Curr Sci, 2012, 103: 628–630[17]陈怡. 怎样提高大豆杂交成活率. 黑龙江农业科学, 1985, (3): 40–42Chen Y. How to increase the survival rate of the artificially-pollinated flowers and young pods in soybean. Heilongjiang Agric Sci, 1985, (3): 40–42 (in Chinese)[18]Agrawal A P, Ravikumar R L, Salimath P M, Patil S A. Improved method for increasing the efficiency of hybridization in soybean (Glycine max (L.) Merill). Indian J Genet, 2001, 61: 76–77[19]韩冬伟. 大豆整体去雄杂交技术的研究与实践. 黑龙江农业科学, 2010, (6): 29–31Han D W. Study and practice of the whole emasculation hybridization technology in soybean. Heilongjiang Agric Sci, 2010, (6): 29–31 (in Chinese with English abstract)[20]王敏. 影响大豆杂交成活率因素初探. 安徽农学通报, 2009, 15(4): 61–62Wang M. Preliminary study on factors affecting the survival rate of the artificially-pollinated flowers and young pods in soybean. Anhui Agric Sci Bull, 2009, 15(4): 61–62 (in Chinese)[21]于伟, 李磊, 李智, 王敏. 大豆的杂交方法与技巧. 作物杂志, 2005, (6): 51–52Yu W, Li L, Li Z, Wang M. Methods and techniques about soybean hybridization. Crops, 2005, (6): 51–52 (in Chinese)[22]于文来, 金鑫. 怎样提高大豆杂交成活率. 种子, 1994, 69(1): 55–56Yu W L, Jin X. How to increase the survival rate of the artificially-pollinated flowers and young pods in soybean. Seed, 1994, 69(1): 55–56 (in Chinese)[23]张桂茹. 大豆杂交技术. 黑龙江农业科学, 1999, (2): 28–29Zhang G R. Soybean crossing technique. Heilongjiang Agric Sci, 1999, (2): 28–29 (in Chinese)[24]Walker A K, Cianzio S R, Bravo J A, Fehr W R. Comparison of emasculation and nonemasculation for hybridization of soybean. Crop Sci, 1979, 19: 285–286[25]申家恒, 严国忠. 大豆自花受粉时花蕾形态特征的观察. 中国油料, 1981, (3): 16–20Shen J H, Yan G Z. Morphological observation of flower buds during self-pollination in Glycine max. Oil Crops China, 1981, (3): 16–20 (in Chinese)[26]申家恒. 大豆受精作用的研究. 植物学报, 1983, 25: 213–221Shen J H. Studies on fertilization in Glycine max. Acta Bot Sin, 1983, 25: 213–221 (in Chinese with English abstract)[27]Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res, 1920, 18: 553–606[28]Garner W W, Allard H A. Further studies in photoperiodism, the response of the plant relative length of day and night. J Agric Res, 1923, 23: 871–920[29]盖钧镒, 赵团结, 崔章林, 邱家训. 中国1923–1995年育成的651个大豆品种的遗传基础. 中国农业科技导报, 1999, (1): 26–30Gai J Y, Zhao T J, Cui Z L, Qiu J X. The Genetic base for 651 soybean cultivars released during 1923–1995 in China. Rev Chin Agric Sci Technol, 1999, (1): 26–30 (in Chinese with English abstract)[30]盖钧镒, 赵团结, 崔章林, 邱家驯. 中国大豆育成品种中不同地理来源种质的遗传贡献. 中国农业科学, 1998, 31(5): 35–43Gai J Y, Zhao T J, Cui Z L, Qiu J X. Nuclear and cytoplasmic contributions of germplasm from distinct areas to the soybean cultivars released during 1923–1995 in China. Sci Agric Sin, 1998, 31(5): 35–43 (in Chinese with English abstract)[31]熊冬金, 赵团结, 盖钧镒. 中国大豆育成品种亲本分析. 中国农业科学, 2008, 41: 2589–2599Xiong D J, Zhang T J, Gai J Y. Parental analysis of soybean cultivars released in China. Sci Agric Sin, 2008, 41: 2589–2598 (in Chinese with English abstract)[32]王彩洁, 孙石, 金素娟, 李伟, 吴存祥, 侯文胜, 韩天富. 中国大豆主产区不同年代大面积种植品种的遗传多样性分析. 作物学报, 2013, 39: 1917–1926Wang C J, Sun S, Jing S J, Li W, Wu C X, Hou W S, Han T F. Genetic diversity analysis of widely-planted soybean varieties from different decades and major production regions in China. Acta Agron Sin, 2013, 39: 1917–1926 (in Chinese with English abstract)[33]王彩洁, 孙石, 吴宝美, 常汝镇, 韩天富. 20世纪40年代以来中国大面积种植大豆品种的系谱分析. 中国油料作物学报, 2013, 35: 246–252Wang C J, Sun S, Wu B M, Chang R Z, Han T F. Pedigree analysis of widely-planting soybean varieties in China since 1940s. Chin J Oil Crop Sci, 2013, 35: 246–252 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|