作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1304-1310.doi: 10.3724/SP.J.1006.2014.01304
刘聪1,肖旦望1,胡学芳1,邬克彬1,官春云1,2,熊兴华1,2,*
LIU Cong1,XIAO Dan-Wang1,HU Xue-Fang1,WU Ke-Bin1,GUAN Chun-Yun1,2,XIONG Xing-Hua1,2,*
摘要:
[1]Gupta S M, Pandey P, Grover A, Patade V Y, Singh S, Ahmed Z. Cloning and characterization of GPAT gene from Lepidium latifolium L.: a step towards translational research in agri-genomics for food and fuel. Mol Biol Rep, 2013, 40: 4235–4240[2]Chen X, Snyder C L, Truksa M, Shah S, Weselake R J. sn-Glycerol-3-phosphate acyltransferases in plants. Plant Signal Behav, 2011, 6: 1695–1699[3]Nishida I, Tasaka Y, Shiraishi H, Murata N. The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol, 1993, 21: 267–277[4]Yang W, Simpson J P, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge J B. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol, 2012, 160: 638–652[5]Gidda S K, Shockey J M, Rothstein S J, Dyer J M, Mullen R T. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol Biochem, 2009, 47: 867–879[6]Murata N, Tasaka Y. Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta, 1997, 1348: 10–16[7]Wendel A A, Lewin T M, Coleman R A. Glycerol-3-phosphate acyltransferases: Rate limiting enzymes of triacylglycerol biosynthesis. Biochimica et Biophysica Acta (BBA). Mol Cell Biol Lipids, 2009, 1791: 501–506[8]Zhang Y M, Rock C O. Thematic review series: glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. J Lipid Res, 2008, 49: 1867–1874[9]Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J. A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci USA, 2010, 107: 12040–12045[10]Bourgis F, Kader J C, Barret P, Renard M, Robinson D, Robinson C, Delseny M, Roscoe T J. A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol, 1999, 120: 913–922[11]Lung S C, Weselake R J. Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids, 2006, 41: 1073–1088[12]Jain R K, Coffey M, Lai K, Kumar A, Mackenzie S L. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans, 2000, 28: 958–961[13]i Y, Beisson F, Koo A J, Molina I, Pollard M, Ohlrogge J. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA, 2007, 104: 18339–18344[14]Li X C, Zhu J, Yang J, Zhang G R, Xing W F, Zhang S, Yang Z N. Glycerol-3-phosphate acyltransferase 6 (GPAT6) is important for tapetum development in Arabidopsis and plays multiple roles in plant fertility. Mol Plant, 2012, 5: 131–142[15]Chen Y Q, Kuo M S, Li S, Bui H H, Peake D A, Sanders P E, Thibodeaux S J, Chu S, Qian Y W, Zhao Y, Bredt D S, Moller D E, Konrad R J, Beigneux A P, Young S G, Cao G. AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J Biol Chem, 2008, 283: 10048–10057[16]Chen X, Truksa M, Snyder C L, El-Mezawy A, Shah S, Weselake R J. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol, 2011, 155: 851–865[17]Manas-Fernandez A, Li-Beisson Y, Alonso D L, Garcia-Maroto F. Cloning and molecular characterization of a glycerol-3-phosphate O-acyltransferase (GPAT) gene from Echium (Boraginaceae) involved in the biosynthesis of cutin polyesters. Planta, 2010, 232: 987–997[18]Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci USA, 2009, 106: 22008–22013[19]Tamada T, Feese M D, Ferri S R, Kato Y, Yajima R, Toguri T, Kuroki R. Substrate recognition and selectivity of plant glycerol-3-phosphate acyltransferases (GPATs) from Cucurbita moscata and Spinacea oleracea. Acta Crystallogr D Biol Crystallogr, 2004, 60: 13–21[20]Ferri S R, Toguri T. Substrate specificity modification of the stromal glycerol-3-phosphate acyltransferase. Arch Biochem Biophys, 1997, 337: 202–208[21]Sui N, Li M, Zhao S J, Li F, Liang H, Meng Q W. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, 2007, 226: 1097–1108[22]Zhu S Q, Zhao H, Liang J S, Ji B H, Jiao D M. Relationships between phosphatidylglycerol molecular species of thylakoid membrane lipids and sensitivities to chilling-induced photoinhibition in rice. J Integr Plant Biol, 2008, 50: 194–202[23]Szalontai B, Kota Z, Nonaka H, Murata N. Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry, 2003, 42: 4292–4299[24]Bertrams M, Heinz E. Positional specificity and fatty acid selectivity of purified sn-glycerol 3-phosphate acyltransferases from chloroplasts. Plant Physiol, 1981, 68: 653-657.[25]Weber S, Wolter F P, Buck F, Frentzen M, Heinz E. Purification and cDNA sequencing of an oleate-selective acyl-ACP:sn-glycerol-3-phosphate acyltransferase from pea chloroplasts. Plant Mol Biol, 1991, 17: 1067–1076[26]Cronan J E, Roughan P G. Fatty acid specificity and selectivity of the chloroplast sn-glycerol 3-phosphate acyltransferase of the chilling sensitive plant. Amaranthus lividus Plant Physiol, 1987, 83: 676–680[27]Yan K, Chen N, Qu Y Y, Dong X C, Meng Q W, Zhao S J. Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. J Integr Plant Biol, 2008, 50: 613–621[28]Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell, 2003, 15: 1872–1887[29]华玮, 李荣俊, 梁述平, 吕应堂. 烟草幼苗两种钙调素结合蛋白激酶的活性调节及基因表达. 植物生理与分子生物学学报, 2005, 31: 305–310Hua W, Li R J, Liang S P, Lu Y T. Gene expression and activity regulation of two calmodulin binding protein kinases in tobacco seedling. J Plant Physiol Mol Biol, 2005, 31: 305–310 (in Chinese with English abstract)[30]Hua W, Zhang L, Liang S, Jones R L, Lu Y T. A tobacco calcium/calmodulin-binding protein kinase functions as a negative regulator of flowering. J Biol Chem, 2004, 279: 31483–31494[31]郭彦, 杨洪双, 李清旭, 孙学彬. 激素对野生大豆幼苗抗旱能力的影响. 河南农业科学, 2007, (4): 37–39Guo Y, Yang H S, Li Q X, Sun X B. Effects of hormones on the tolerance of wild soybean seedlings against water stress. J Henan Agric Sci, 2007, (4): 37–39 (in Chinese with English abstract)[32]童晋, 詹高淼, 王新发, 刘贵华, 华玮, 王汉中. 油菜柠檬酸合酶基因的克隆及在逆境下的表达. 作物学报, 2009, 35: 33–40Tong J, Zhan G M, Wang, X F, Liu G H, Hua W, Wang H Z. Cloning of citrate synthase gene in rapeseed (Brassica napus L.) and its expression under stresses. Acta Agron Sin, 2009: 33–40 (in Chinese with English abstract) |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[5] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[10] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[11] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148. |
[14] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[15] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
|