欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1304-1310.doi: 10.3724/SP.J.1006.2014.01304

• 研究简报 • 上一篇    下一篇

甘蓝型油菜2个GPAT6同源基因的克隆与表达分析

刘聪1,肖旦望1,胡学芳1,邬克彬1,官春云1,2,熊兴华1,2,*   

  1. 1 湖南农业大学作物基因工程湖南省重点实验室, 湖南长沙 410128; 2 湖南农业大学油料作物研究所, 湖南长沙 410128
  • 收稿日期:2013-11-16 修回日期:2014-04-16 出版日期:2014-07-12 网络出版日期:2014-05-16
  • 通讯作者: 熊兴华, E-mail: ndxiongene@yahoo.com, Tel: 13508487613
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2012AA101107-3)和湖南农业大学作物学开发基金资助项目(ZWKF201303)资助。

Cloning and Expression Analysis of Two Homologous Genes Coding sn-Glycerol-3-Phosphate Acyltransferase 6 in Brassica napus

LIU Cong1,XIAO Dan-Wang1,HU Xue-Fang1,WU Ke-Bin1,GUAN Chun-Yun1,2,XIONG Xing-Hua1,2,*   

  1. 1 Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha 410128, China; 2 Oilseed Crops Institute, Hunan Agricultural University, Changsha 410128, China
  • Received:2013-11-16 Revised:2014-04-16 Published:2014-07-12 Published online:2014-05-16
  • Contact: 熊兴华, E-mail: ndxiongene@yahoo.com, Tel: 13508487613

摘要:

 

甘油-3-磷酸酰基转移酶(sn-glycerol-3-phosphate acyltransferase, GPAT)是三酰甘油生物合成的关键酶, 催化三酰甘油合成的起始步骤, 在植物中参与调节生长发育、脂质的合成和逆境应答等过程。本试验通过RT-PCR从甘蓝型油菜品种湘油15中克隆得到GPAT6基因的2个拷贝, 分别命名为BnGPAT6-1 (GenBank登录号为KJ000117)和BnGPAT6-2 (KC106728)。它们的编码区序列(coding DNA sequence, CDS)均为1506 bp, 编码501个氨基酸。预测其蛋白结构N端含有一个类卤酸脱卤酶(haloacid dehalogenase-like hydrolase, HAD-like)活性结构域, C端含有一个溶血磷脂酰基转移酶(lysophospholipid acyltransferase, LPLAT)功能域。蛋白序列比对和进化树分析表明, 甘蓝型油菜与白菜(B. rapa)、甘蓝(B. oleracea)、拟南芥(Arabidopsis thaliana)和琴叶拟南芥(A. lyrata)中的GPAT6序列相似性最高。组织表达结果表明BnGPAT6基因在花中的表达量最高, 在未成熟的胚中表达量呈先升高后降低的趋势。BnGPAT6的表达受ABA的抑制; 在干旱和6-BA胁迫下几乎同时升高; 在盐胁迫下,短时间内升高, 达到峰值后降低; 在水渍条件下没有明显变化。

关键词: 甘蓝型油菜, 甘油-3-磷酸酰基转移酶, 基因克隆, 表达分析, 逆境胁迫

Abstract:

A key enzyme sn-glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial step of TAG biosynthetic pathway, and is involved in many processes including plant growth, development and response to abiotic stresses. In this study, two B. napus GPAT6 homologs were cloned from the leaf of the cultivar xiangyou 15 using RT-PCR, and designated as BnGPAT6-1 and BnGPAT6-2, respectively. The coding DNA sequences (CDS) of two BnGPAT6 genes are 1506 bp in length, encoding two different polypeptides of 501 amino acid residues. The proteins were predicted to consist of a haloacid dehalogenase-like hydrolase domain and a lysophospholipid acyltransferase domain. Multiple sequence alignments and phylogenetic analysis of GPAT proteins showed that BnGPAT6-1 and BnGPAT6-2 share high similarity with GPAT6 genes from B. rapa, B. oleracea, Arabidopsis thaliana,and A. lyrata. Tissue expression amounts of BnGPAT6 genes showed that their mRNA were more abundant in flower than the other organs, and the patterns rise up at first and then down in the developing embryo. The expression of BnGPAT6 genes are inhibited by ABA, while go up simultaneously under drought and 6-BA conditions. In the treatment of salt, the expression of BnGPAT6 genes are uptrend in a short time and then down, and there isn’t obvious change under stress of water logging.

Key words: Brassica napus, sn-glycerol-3-phosphate acyltransferase, Gene cloning, Expression analysis, Abiotic stresses

[1]Gupta S M, Pandey P, Grover A, Patade V Y, Singh S, Ahmed Z. Cloning and characterization of GPAT gene from Lepidium latifolium L.: a step towards translational research in agri-genomics for food and fuel. Mol Biol Rep, 2013, 40: 4235–4240



[2]Chen X, Snyder C L, Truksa M, Shah S, Weselake R J. sn-Glycerol-3-phosphate acyltransferases in plants. Plant Signal Behav, 2011, 6: 1695–1699



[3]Nishida I, Tasaka Y, Shiraishi H, Murata N. The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol, 1993, 21: 267–277



[4]Yang W, Simpson J P, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge J B. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol, 2012, 160: 638–652



[5]Gidda S K, Shockey J M, Rothstein S J, Dyer J M, Mullen R T. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol Biochem, 2009, 47: 867–879



[6]Murata N, Tasaka Y. Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta, 1997, 1348: 10–16



[7]Wendel A A, Lewin T M, Coleman R A. Glycerol-3-phosphate acyltransferases: Rate limiting enzymes of triacylglycerol biosynthesis. Biochimica et Biophysica Acta (BBA). Mol Cell Biol Lipids, 2009, 1791: 501–506



[8]Zhang Y M, Rock C O. Thematic review series: glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. J Lipid Res, 2008, 49: 1867–1874



[9]Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J. A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci USA, 2010, 107: 12040–12045



[10]Bourgis F, Kader J C, Barret P, Renard M, Robinson D, Robinson C, Delseny M, Roscoe T J. A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol, 1999, 120: 913–922



[11]Lung S C, Weselake R J. Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids, 2006, 41: 1073–1088



[12]Jain R K, Coffey M, Lai K, Kumar A, Mackenzie S L. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans, 2000, 28: 958–961



[13]i Y, Beisson F, Koo A J, Molina I, Pollard M, Ohlrogge J. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA, 2007, 104: 18339–18344



[14]Li X C, Zhu J, Yang J, Zhang G R, Xing W F, Zhang S, Yang Z N. Glycerol-3-phosphate acyltransferase 6 (GPAT6) is important for tapetum development in Arabidopsis and plays multiple roles in plant fertility. Mol Plant, 2012, 5: 131–142



[15]Chen Y Q, Kuo M S, Li S, Bui H H, Peake D A, Sanders P E, Thibodeaux S J, Chu S, Qian Y W, Zhao Y, Bredt D S, Moller D E, Konrad R J, Beigneux A P, Young S G, Cao G. AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J Biol Chem, 2008, 283: 10048–10057



[16]Chen X, Truksa M, Snyder C L, El-Mezawy A, Shah S, Weselake R J. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol, 2011, 155: 851–865



[17]Manas-Fernandez A, Li-Beisson Y, Alonso D L, Garcia-Maroto F. Cloning and molecular characterization of a glycerol-3-phosphate O-acyltransferase (GPAT) gene from Echium (Boraginaceae) involved in the biosynthesis of cutin polyesters. Planta, 2010, 232: 987–997



[18]Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci USA, 2009, 106: 22008–22013



[19]Tamada T, Feese M D, Ferri S R, Kato Y, Yajima R, Toguri T, Kuroki R. Substrate recognition and selectivity of plant glycerol-3-phosphate acyltransferases (GPATs) from Cucurbita moscata and Spinacea oleracea. Acta Crystallogr D Biol Crystallogr, 2004, 60: 13–21



[20]Ferri S R, Toguri T. Substrate specificity modification of the stromal glycerol-3-phosphate acyltransferase. Arch Biochem Biophys, 1997, 337: 202–208



[21]Sui N, Li M, Zhao S J, Li F, Liang H, Meng Q W. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, 2007, 226: 1097–1108



[22]Zhu S Q, Zhao H, Liang J S, Ji B H, Jiao D M. Relationships between phosphatidylglycerol molecular species of thylakoid membrane lipids and sensitivities to chilling-induced photoinhibition in rice. J Integr Plant Biol, 2008, 50: 194–202



[23]Szalontai B, Kota Z, Nonaka H, Murata N. Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry, 2003, 42: 4292–4299



[24]Bertrams M, Heinz E. Positional specificity and fatty acid selectivity of purified sn-glycerol 3-phosphate acyltransferases from chloroplasts. Plant Physiol, 1981, 68: 653-657.



[25]Weber S, Wolter F P, Buck F, Frentzen M, Heinz E. Purification and cDNA sequencing of an oleate-selective acyl-ACP:sn-glycerol-3-phosphate acyltransferase from pea chloroplasts. Plant Mol Biol, 1991, 17: 1067–1076



[26]Cronan J E, Roughan P G. Fatty acid specificity and selectivity of the chloroplast sn-glycerol 3-phosphate acyltransferase of the chilling sensitive plant. Amaranthus lividus Plant Physiol, 1987, 83: 676–680



[27]Yan K, Chen N, Qu Y Y, Dong X C, Meng Q W, Zhao S J. Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. J Integr Plant Biol, 2008, 50: 613–621



[28]Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell, 2003, 15: 1872–1887



[29]华玮, 李荣俊, 梁述平, 吕应堂. 烟草幼苗两种钙调素结合蛋白激酶的活性调节及基因表达. 植物生理与分子生物学学报, 2005, 31: 305–310



Hua W, Li R J, Liang S P, Lu Y T. Gene expression and activity regulation of two calmodulin binding protein kinases in tobacco seedling. J Plant Physiol Mol Biol, 2005, 31: 305–310 (in Chinese with English abstract)



[30]Hua W, Zhang L, Liang S, Jones R L, Lu Y T. A tobacco calcium/calmodulin-binding protein kinase functions as a negative regulator of flowering. J Biol Chem, 2004, 279: 31483–31494



[31]郭彦, 杨洪双, 李清旭, 孙学彬. 激素对野生大豆幼苗抗旱能力的影响. 河南农业科学, 2007, (4): 37–39



Guo Y, Yang H S, Li Q X, Sun X B. Effects of hormones on the tolerance of wild soybean seedlings against water stress. J Henan Agric Sci, 2007, (4): 37–39 (in Chinese with English abstract)



[32]童晋, 詹高淼, 王新发, 刘贵华, 华玮, 王汉中. 油菜柠檬酸合酶基因的克隆及在逆境下的表达. 作物学报, 2009, 35: 33–40



Tong J, Zhan G M, Wang, X F, Liu G H, Hua W, Wang H Z. Cloning of citrate synthase gene in rapeseed (Brassica napus L.) and its expression under stresses. Acta Agron Sin, 2009: 33–40 (in Chinese with English abstract)

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[10] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[11] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148.
[14] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[15] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!