欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1386-1391.doi: 10.3724/SP.J.1006.2014.01386

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用SNP高密度遗传连锁图谱定位甘蓝型油菜种子硫苷含量的QTL

荐红举,魏丽娟,李加纳,徐新福,谌利,刘列钊*   

  1. 西南大学农学与生物科技学院 / 重庆市油菜工程技术研究中心, 重庆 400716
  • 收稿日期:2014-02-15 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-06-03
  • 通讯作者: liezhao2003@126.com, Tel: 023-68250701
  • 基金资助:

    This research was supported by The National Natural Science Foundation of China (No. 31171584), The Chongqing Natural Science Foundation (No.cstc2011jjA8000g), and The Program of Introducing International Super Agricultural Science and Technology (948 Program) (No.2011-G23).

Quantitative Traits Loci Analysis of Seed Glucosinolate Content in Brassica napus Using High-density SNP Map

JIAN Hong-Ju,WEI Li-Juan,LI Jia-Na,XU Xin-Fu,CHEN Li,LIU Lie-Zhao*   

  1. Chongqing Engineering Research Center for Rapeseed / College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2014-02-15 Revised:2014-04-16 Published:2014-08-12 Published online:2014-06-03
  • Supported by:

    This research was supported by The National Natural Science Foundation of China (No. 31171584), The Chongqing Natural Science Foundation (No.cstc2011jjA8000g), and The Program of Introducing International Super Agricultural Science and Technology (948 Program) (No.2011-G23).

摘要:

种子硫苷在甘蓝型油菜中有着重要的生物学作用和经济价值。本文旨在通过复合区间作图法利用高密度SNP遗传连锁图谱定位种子硫苷的QTL。用近红外扫描获得种子硫苷含量,每株系扫描3次,取平均值。所用的高密度SNP遗传图谱包含2795SNP多态性标记位点,图谱总长1832.9 cM,相邻标记间平均距离为0.66 cM。定位了2年的种子硫苷含量QTL,其中有5个在2年内被重复检测到,分别分布在A03A09C02染色体上,LOD阈值在2.90~10.40之间。这些QTL20112012年试验中分别解释了56.9%55.1%的表型变异。另外有5QTL仅在其中一年被检测到,这些QTL能够解释4.1%~7.9%的表型变异,QTL阈值在2.53~3.83之间。

关键词: 甘蓝型油菜, 单核苷酸多态性, 数量性状位点, 种子硫苷含量

Abstract:

Seed glucosinolate plays important biological and economic roles in Brassica napus. In this study, we aimed at identifying QTLs related to seed glucosinolate content of B. napus using the composite interval mapping (CIM) method based on the high density SNP genetic map. The total seed glucosinolate content was analyzed via Near Infrared Spectroscopy (NIR) using standard methods with three technical replicates. The QTLs related to seed glucosinolate content in two years were detected using the SNP genetic map constructed in 2013, which contains 2795 SNP markers with the total map length of 1832.9 cM and an average distance of 0.66 cM. Five QTLs for seed total glucosinolate content were identified on A03, A09, C02 in both 2011 and 2012, and LOD threshold values for significant QTLs both in 2011 and in 2012 were determined to be 2.90–10.4. These QTLs explained for 56.9% and 55.1% of the total phenotypic variance in 2011 and 2012, respectively. Another five minor QTLs were also detected either in 2011 or 2012. These QTLs accounted for 4.1%–7.9% of the phenotypic variance and the LOD threshold values were 2.53–3.83.

Key words: Brassica napus, Single nucleotide polymorphism, Quantitative trait loci, Seed glucosinolate content

[1]Hasan M, Friedt W, Pons-Kühnemann J, Freitag N M, Link K, Snowdon R J. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet, 2008, 116: 1035–1049



[2]Sønderby I E, Fernando G F, Halkier B A. Biosynthesis of glucosinolates gene discovery and beyond. Trends Plant Sci, 2010, 15: 1360–1385



[3]Wang H, Wu J, Sun S L, Liu B, Cheng F, Sun R F, Wang X W. Glucosinolate biosynthetic genes in Brassica rapa. Gene, 2011, 487: 135–142



[4]Hayes J, Kelleher M, Eggleston I. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr, 2008, 47: 73–88



[5]Walker K C, Booth E J. Agricultural aspects of rape and other Brassica products. Eur J Lipid Sci Technol, 2001, 103: 441–446



[6]Hasegawa T, Yamada K, Kosemura S, Yamamura S, Hasegawa K. Phototropic stimulation induces theconversion of glucosinolate to phototropism-regulatingsubstances of radish hypocotyls. Phytochemistry, 2000, 54: 275–279



[7]Mikkelsen M D, Hansen C H, Wittstock U, Halkier B A. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan toindole-3-acetaldoxime, a precursor of indoleglucosinolates and indole-3-acetic acid. J Biol Chem, 2000, 275: 33712–33717



[8]Hull A K, Vij R, Celenza J L. Arabidopsis cyto-chrome P450s that catalyze the ?rst step of tryptophan-dependent indole-3-acetic acid biosynthesis, Proc Natl Acad Sci, 2000, 97: 2379–2384



[9]Uzunova M, Ecke W, Weissleder K, Röbbelen G. Mapping the genome of rapeseed (Brassica napus L.). I. construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995, 90: 194–204



[10]Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003, 46: 454–460



[11]Sharpe A G, Lydiate D J. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome, 2003, 46: 461–468



[12]Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed, 2003, 122: 19–23



[13]Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Sonwdon R J, Li J N. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013, 8: e83052



[14]Wang S, Basten C J, Zeng Z B. 2006. Windows QTL cartographer. Version 2.5 Department of Statistics, North Carolina State University, Raleigh, N C, 2006.[2012-10-15] [2010-06-26]. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm



[15]Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–131 [16] Halkier B A, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol, 2006, 57: 303–333



[17]Toroser D, Thormann C E, Osborn T C, Mithen R. RFLP mapping of quantitative trait loci controlling seed aliphaticglucosinolate content in oilseed rape (Brassica napus L.). Theor Appl Genet, 1995, 91: 802–808



[18]Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative traitanalysis of seed yield and other complex traits in hybrid springrapeseed (Brassica napus L.): 1. identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113: 549–561



[19]Basunanda P, Spiller T H, Hasan M, Gehringer A, Schondelmaier J, Luhs W, Friedtand W, Snowdon R J. Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed, 2007, 126: 581–587



[20]Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122–1131



[21]Ferreira M E , Williams P H, Osborn T C. RFLP mapping of Brassica napus using doubled-haploid lines. Theor Appl Genet, 1994, 89: 615–621



[22]Harper A L, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol, 2012, 30: 798–802



[23]Kliebenstein D J, D’Auria J C, Behere A S, Kim J H, Gunderson K L, Breen J N, Lee G, GershenzonJ, Last R L, Jander G. Characterization of seed-speci?c benzoyloxyglucosinolatemutations in Arabidopsis thaliana. Plant J, 2007, 51: 1062–1076



[24]Grubb C D, Abel1 S. Glucosinolate metabolism and its control. Trends Plant Sci, 2006, 11: 89–100



[25]Mikkelsen M D, Naur P and Halkier B A. Arabidopis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role indol-3-acetaldoxime in auxinhomeostasis. Plant J, 2004, 37: 770–777

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[9] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[10] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[11] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[12] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[13] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[14] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[15] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!