欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (10): 1711-1716.doi: 10.3724/SP.J.1006.2014.01711

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻类树状突变体s2-21的遗传分析与精细定位

王海凤1,高洁1,孙伟1,张士永1,赵庆雷1,尹亮1,赵金凤2,李学勇2,*,袁守江1,*   

  1. 1山东省水稻研究所,山东济南250100;2中国农业科学院作物科学研究所 / 作物基因资源与基因改良国家重大科学工程,北京100081
  • 收稿日期:2014-03-14 修回日期:2014-07-06 出版日期:2014-10-12 网络出版日期:2014-07-25
  • 通讯作者: 李学勇, E-mail: lixueyong@caas.cn, Tel: 010-82107409; 袁守江, E-mail: ysj868@sina.com, Tel: 15615973691
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2013CBA01401)和国家转基因生物新品种培育重大专项(2013ZX08009003)资助。

Genetic Analysis and Gene Fine Mapping of Rice Leafy Head Mutant s2-21

WANG Hai-Feng1,GAO Jie1,SUN Wei1,ZHANG Shi-Yong1,ZHAO Qing-Lei1,YIN Liang1,ZHAO Jin-Feng2,LI Xue-Yong2,*,YUAN Shou-Jiang1,*   

  1. 1 Shandong Rice Research Institute, Jinan 250100, China; 2 National Key Facility for Crop Gene Resource and Geneic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2014-03-14 Revised:2014-07-06 Published:2014-10-12 Published online:2014-07-25
  • Contact: 李学勇, E-mail: lixueyong@caas.cn, Tel: 010-82107409; 袁守江, E-mail: ysj868@sina.com, Tel: 15615973691

摘要:

叶序和出叶间隔期是叶片生长发育的基本生物学特性和水稻的重要农艺性状之一。对叶序或出叶间隔期突变体的研究,可以帮助我们了解叶片的形成机制。本研究以甲基磺酸乙酯(EMS)诱变粳稻品种日本晴,获得一个稳定遗传的类树状突变体s2-21。该突变体出叶间隔期变短、节间缩短、植株矮化、分蘖数减少、叶片数增加、不能正常进行生殖生长。将该突变体与籼稻品种Dular杂交,遗传分析表明该突变体性状受1对隐性基因控制。通过InDel分子标记对s2-21/Dular F2群体进行遗传定位,将该基因初步定位在第1染色体InDel标记C1-15和S1-17之间。利用本实验已测序的籼稻品种Dular全基因组序列与NCBI (http://www.ncbi.nlm.nih.gov/)上提供的粳稻品种日本晴基因组序列比对,发展了6个新的InDel标记,最终将该基因定位在W25和W26之间约88 kb的区间内。测序结果表明该突变体中PLA2基因的第4个内含子的第5位碱基由G突变为A。

关键词: 水稻, 类树状突变体, 出叶间隔期, 基因定位, PLA2

Abstract:

Phyllotaxy and plastochron are basic aspects of leaf development and the important agronomic traits of rice .The study of phyllotaxy or plastochron mutant will help us to understand the mechanism of leaf formation. In this study, a leafy head mutant s2-21 was isolated from an EMS (ethyl methane sulfonate) mutagenized japonica cultivar Nipponbare. It was characterized by shorter intervals between leaves, shortened internodes, dwarf plants, decreased tiller number, and increased leaf number. It was also unable to transit from vegetative to reproductive growth. Genetic analysis with a F2 population of the mutant and an indica cultivar Dular showed that this trait is controlled by a single recessive nucleus gene, which was primarily mapped between two insertion-deletion (InDel) markers C1-15 and S1-17 on chromosome 1. For the fine mapping, new InDel markers were designed by utilizing information of genomic sequences from Nipponbare (http://www.ncbi.nlm.nih.gov/) and Dular (our unpublished data), and eventually the gene was localized within the region of 88 kb between W25 and W26. Sequence analysis indicated the mutant was caused by mutation of the fifth base from G to A in the fourth intron of the pla2 gene.

Key words: Rice, Leafy head mutant, Plastochron, Gene mapping, PLA2

[1]Coen E, Meyerowitz E. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991, 353: 31–37



[2]Tsukaya H. Leaf morphogenesis: genetic regulations for length, width and size of leaves. Tanpakushitsu Kakusan Koso, 2002, 47: 1576–1580



[3]严松, 严长杰, 顾铭洪. 植物叶发育的分子机理. 遗传, 2008, 30: 1127–-1135



Yan S, Yan C J, Gu M H. Molecular mechanism of leaf development. Hereditas (Beijing), 2008, 30: 1127–1135 (in Chinese with English abstract)



[4]Hake S. MicroRNAs: a role in plant development. Curr Biol, 2003, 13: R851–R852



[5]Miyoshi K, Ahn B, Kawakatsu T, Ito Y, Itoh J, Nagato Y, Kurata N. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci USA, 2004, 101: 875–880



[6]Taiji K, Jun-Ichi I, Kazumaru M, Nori K, Nena A, Bruce V, Yasuo N. PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell, 2006, 18: 612–625



[7]Xiong G S, Hu X M, Jiao Y Q, Yu Y C, Chu C C, Li J Y, Qian Q, Wang Y H. LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Cell Res, 2006, 16: 267–276



[8]Taiji K, Graziana T, Jun-Ichi I, Justin A, Yutaka S, Soon-Kwan H, Ryan Y, Nobuhiro N, Mikiko K, Makoto K, Hitoshi S, Hajime S, Yasuo N. PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice. Plant J, 2009, 58: 1028–1040



[9]Veit B, Briggs S, Schmidt R, Yanofsky M , Hake S. Regulation of leaf initiation by the terminal ear1 gene of maize. Nature, 1998, 393: 166–168



[10]Helliwell C, Chin-Atkins A, Wilson L, Chapple R, Dennis E, Chaudhury A. The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell, 2001, 13: 2115–2125



[11]Reed J, Nagpal P, Poole D, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell, 1993, 5: 1263–1279



[12]Prigge M, Wagner D. The Arabidopsis serrate gene encodes a zinc-finger protein required for normal shoot development. Plant Cell, 2001, 13: 1263–1279



[13]Murray M, Thompson W. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4326



[14]Quarrie S, Lazi?-Jan?i? V, Kova?evi? D, Steed A, Peki? S. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot, 1999, 50: 1299–1306



[15]Pauaud O, Chen X, McCouch S. Frequency of microsatellite sequences in rice (Oryza sativa L.). Genome, 1995, 38: 1170–1176



[16]郭龙彪, 程式化, 钱前. 水稻基因设计育种的研究进展与展望. 中国水稻科学, 2008, 22: 650–657



Guo L B, Cheng S H, Qian Q. Progress and prospects of breeding by gene design in rice. Chin J Rice Sci, 2008, 22: 650–657 (in Chinese with English abstract)



[17]沈波, 钱惠荣, 王建林, 郑康乐. 应用RFLP定位水稻的生育期基因. 作物学报, 1994, 20: 1–7



Shen B, Qian H R, Wang J L, Zheng K L. Tagging genes for heading date in rice via linkage to RFLP markers. Acta Agron Sin, 1994, 20: 1–7 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!