欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (10): 1865-1871.doi: 10.3724/SP.J.1006.2014.01865

• 研究简报 • 上一篇    下一篇

玉米种子休眠相关蛋白的鉴定与分析

兰海1,冷亦峰2,周树峰1,刘坚1,荣廷昭1,*   

  1. 1四川农业大学玉米研究所 / 农业部西南玉米生物学与遗传育种重点实验室, 四川成都 611130;2四川省农业科学院作物研究所, 四川成都 610066
  • 收稿日期:2014-05-07 修回日期:2014-07-06 出版日期:2014-10-12 网络出版日期:2014-07-23
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A103)和四川省青年科技基金项目(09ZQ026-012)资助。

Proteomic Analysis of Dormant Seeds with Dry Ripening Process in Maize Inbred Lines

LAN Hai1,LENG Yi-Feng2,ZHOU Shu-Feng1,LIU Jian1,RONG Ting-Zhao1,*   

  1. 1 Maize Research Institute , Sichuan Agricultural University / Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; 2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
  • Received:2014-05-07 Revised:2014-07-06 Published:2014-10-12 Published online:2014-07-23

摘要:

以强休眠性玉米自交系08-641为材料, 2个弱休眠性玉米自交系为对照, 利用蛋白质双向电泳技术, 对处于休眠状态下的新鲜收获种子和经过15 d后熟处理破除休眠的3个自交系种子进行了蛋白质差异表达分析。结果表明, 3次重复试验下共检测到9个与休眠相关的蛋白点, 其中新增诱导表达蛋白质1, 缺失表达蛋白质2, 上调表达蛋白质5, 下调表达蛋白质1个。在9个蛋白质中, 5个蛋白点得到鉴定。包括3globulin-1 S allele precursor12-isopropylmalate synthase B1translationally-controlled tumor protein。种子休眠破除过程中的蛋白质的变化说明种子经历了一系列生理生化活动, 深入研究这些蛋白质的生物学功能将有助于更清楚地认识玉米种子休眠问题。

关键词: 玉米, 种子休眠, 贮藏物质, 双向电泳, 蛋白质组

Abstract:

Because the special natural climate of overabundant rain and poor sunshine in the southwest, pre-harvest sprouting has seriously affected the quality and yield of maize, looking for a good material with resistance to pre-harvest sprouting is the urgent need for improvement of existing maize strains. The results of this study indicated that proteome of 08-641, 008, and 127 seeds significantly changed during afterripening. Nine differentially expressed proteins related to dormancy in the seeds of maize inbred line 08-641 with 15 d afterripening process were analysed through 2-DE, including one newly induced expressed protein, two missing expressed proteins, five up-regulated expressed proteins, and one down-regulated expressed protein. Among the nine proteins,five proteins were identified by mass spectrometry, including three globulin-1 S allele precursor of storage proteins,one 2-isopropylmalate synthase B and one translationally-controlled tumor protein involved in regulating protein structure and cell function. The changes of proteins during dry ripening process of seeds indicated that the seeds undergo a series of physiological and biochemical activities befor they can germinate normally, and the deeply study on the biological function of these proteins will help us understand maize seed dormancy more clearly.

Key words: Maize, Seed dormancy, Storage substances, Two dimensional electrophoresis, Proteome

[1] Baskin J M, Baskin C C. A classification system for seed dormancy. Seed Sci Res, 2004, 14: 1–16



[2] Romagosa I, Prada D, Moralejo M A, Sopena A, Muñoz P, Casas A M, Swanston J S, Molina-Cano J L. Dormancy, ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening. J Exp Bot, 2001, 52: 1499–1506



[3] 孙果忠, 肖世和. 脱落酸与种子休眠. 植物生理学通讯, 2004, 40: 115–120



Sun G Z, Xiao S H. Abscisic acid and seed dormancy. Plant Physiol J, 2004, 40: 115–120 (in Chinese)



[4] 邢勇, 武月琴. 种子休眠与致休眠因子. 生物学教学, 2003, 28(5): 7–8



Xing Y, Wu Y Q. Seed dormancy and dormancy factor. Biol Teaching, 2003, 28(5): 7–8 (in Chinese)



[5] 侯冬花, 萨拉木•艾尼瓦尔, 海利力•库尔班. 种子休眠与休眠解除的研究进展. 新疆农业科学, 2007, 44(3): 349–354



Hou D H, Salamu•Ainiwaer, Hailili•Kuerban. Studies on seed dormancy and dormancy breaking. Xinjiang Agric Sci, 2007, 44(3): 349–354 (in Chinese with English abstract)



[6] 种子工作手册编写组. 种子工作手册. 上海: 上海科学技术出版社, 1979. p 425



Seeds Work Manual Editorial Group. Seeds Work Manual. Shanghai: Shanghai Scientific and Technical Publishers, 1979. p 425 (in Chinese)



[7] 唐安军, 龙春林, 刀志灵. 种子休眠机制研究概述. 云南植物研究, 2004, 26: 241–251



Tang A J, Long C L, Dao Z L. Review on development of seed dormancy mechanisms. Acta Bot Yunnanica, 2004, 26: 241–251 (in Chinese with English abstract)



[8] 颜启传. 种子学. 北京: 中国农业出版社, 2001. p 559



Yan Q C. Spermology. Beijing: China Agricuture Press, 2001. p 559 (in Chinese)



[9] Karssen C M, Lacka E. A Revision of the Hormone Balance Theory of Seed Dormancy: Studies on Gibberellin and/or Abscisic Acid-Deficient Mutants of Arabidopsis thaliana. Springer, 1986. pp 315–323



[10] 孙秀琴, 田树霞. 元宝槭种子休眠生理的研究. 林业科学研究, 1991, 4: 185–191



Sun X Q, Tian S X. Research on seed dormancy physiology of Acer Truncatum. For Res, 1991, 4: 185–191 (in Chinese)



[11] 王艳华, 高述民, 李凤兰, 赵伟, 孙玉红, 路莲. 大山樱种子休眠机制的探讨. 种子, 2005, 24(5): 12–16



Wang Y H, Gao S M, Li F L, Zhao W, Sun Y H, Lu L. Discussion of dormancy mechanism of Prunus sargentill seeds. Seed, 2005, 24(5): 12–16 (in Chinese with English abstract)



[12] 叶常丰, 戴心维. 种子学. 北京, 中国农业出版社, 1994. pp 178–180



Ye C F, Dai X W. Spermology. Beijing: China Agricuture Press, 1994. pp 178–180 (in Chinese)



[13] Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol, 2001, 126: 835–848



[14] Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P. Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol, 2006, 142: 1493–1510



[15] 张海萍, 常成, 肖世和. 小麦胚休眠中ABA信号转导的蛋白质组分析. 作物学报, 2006, 32: 690–697



Zhang H P, Chang C, Xiao S H. Proteomic analysis on abscisic acid signal transduction in embryo dormancy of wheat (Triticum aestivum L.). Acta Agron Sin, 2006, 32: 690–697 (in Chinese with English abstract)



[16] 兰海, 李新海, 王凤格, 高世斌, 曹墨菊, 唐祈林, 潘光堂, 赵久然, 荣廷昭. 玉米种子休眠性的QTL定位. 作物学报, 2007, 33: 1474–1478



Lan H, Li X H, Wang F G, Gao S B, Cao M J, Tang Q L, Pan G T, Zhao J R, Rong T Z. QTL mapping of seed dormancy in maize (Zea mays L.). Acta Agron Sin, 2007, 33: 1474–1478 (in Chinese with English abstract)



[17] Wallace N H, Kriz A L. Nucleotide sequence of a cDNA clone corresponding to the maize globulin-2 gene. Plant Physiol, 1991, 95: 973



[18] Belanger F C, Kriz A L. Molecular basis for allelic polymorphism of the maize Globulin-1 gene. Genetics, 1991, 129: 863–872



[19] Hansen M, Friis C, Bowra S, Holm P B, Vincze E. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley. J Exp Bot, 2009, 60: 153–167



[20] Gallardo K, Job C, Groot S P, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination. a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837



[21] 孙晶, 吴毓, 王继红, 李庆伟. 受翻译调节的肿瘤蛋白的结构与功能. 中国生物化学与分子生物学报, 2006, 22: 603–608



Sun J, Wu Y, Wang J H, Li Q W. Structure and function of translationally controlled tumor protein. Chin J Biochem Mol Biol, 2006, 22: 603–608 (in Chinese with English abstract)



[22] 陈玉芹, 王喆之. 植物翻译控制肿瘤蛋白的分子结构特征与功能预测分析. 生物技术通报, 2008, (2): 105–112



Chen Y Q, Wang Z Z. Analysis of molecular structural character and function prediction on plant translationally controlled tumor protein. Biotechnol Bull, 2008, (2): 105–112 (in Chinese with English abstract)



[23] 林莎, 高帆, 罗洪, 牛蓓, 林颖, 秦小波, 徐莺, 陈放等. 麻疯树Jc-Tctp1基因的同源性分析及时空表达模式鉴定. 中国生物化学与分子生物学报, 2008, 24: 727–734



Lin S, Gao f, Luo H, Niu B, Lin Y, Qin X B, Xu Y, Chen F. Sequencing and expression of translationally controlled tumor protein (TCTP) of Jatropha curcas L. Chin J Biochem Mol Biol, 2008, 24: 727–734 (in Chinese with English abstract)



[24] Van de Sande W W J, Fahal A H, Riley T V, Verbrugh H, Van Belkum A. In vitro susceptibility of madurella mycetomatis, prime agent of madura foot, to tea tree oil and artemisinin. J Antimicrob Chemoth, 2007, 59: 553–555



[25] 曹必好, 雷建军, 陈国菊, 曾国平, 孟成民. 结球甘蓝转录调控肿瘤蛋白基因(TCTP)的分离与表达特性初步分析. 农业生物技术学报, 2006, 14: 996–997



Cao B H, Lei J J, Chen G J, Zeng G P, Meng C M. Isolation and expression analysis of the gene encoding translationally controlled tumor protein (TCTP) in cabbage. J Agric Biotechnol, 2006, 14: 996–997 (in Chinese with English abstract)



[26] Ermolayev V, Weschke W, Manteuffel R. Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot, 2003, 54: 2745–2756



[27] Dai S J, Chen T T, Chong K, Xue Y B, Liu S Q, Wang T. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics, 2007, 6: 207–230



[28] 邵彩虹, 谢金水, 黄永兰. 孕穗期水稻不同功能叶的发育蛋白质组学分析. 中国水稻科学, 2009, 23: 456–462



Shao C H, Xie J S, Huang Y L. Developmental proteomics analysis of different functional leaves in rice (Oryza sativa) at the booting stage. Chin J Rice Sci, 2009, 23: 456–462 (in Chinese with English abstract)



[29] Sage Ono K, Ono M, Harada H, Kamada H. Dark-induced accumulation of mRNA for a homolog of translationally controlled tumor protein (TCTP) in Pharbitis. Plant Cell Physiol, 1998, 39: 357–360



[30] 邓治, 覃碧, 冯福应, 李德军. 巴西橡胶树TCTP基因结构分析及分子标记开发. 热带作物学报, 2012, 33: 1450–1455



Deng Z, Qin B, Feng F Y, Li D J. Gene structure analysis development and molecular marker of HbTCTP. Chin J Trop Crops, 2012, 33: 1450–1455 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!